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ABSTRACT

This study examines the movement of a small freely rotating spherical particle in a two-dimensional trajectory through a viscoelastic fluid
described by the Giesekus model. The fluid equations of motion in the inertialess limit and the Giesekus constitutive equation are expanded
as a power series in the Weissenberg number, for which analytical solutions for velocity and pressure profiles at low order can be determined
for the case of a steady-state flow. These steady solutions are then related to Fourier-transformed variables in frequency space through the
use of correspondence relationships, allowing the analysis of time-dependent particle trajectories. The relative unsteadiness and nonlinearity
of these time-dependent flows are quantified through a Deborah and Weissenberg number, respectively. The impact of changing these
dimensionless parameters on the characteristics of the flow is discussed at length. We calculate the predicted rate of rotation of a small parti-
cle undergoing an arbitrary two-dimensional translation through a viscoelastic fluid, as well as the predicted correction to the force exerted
on the particle arising from the interaction of particle rotation and translation. Finally, we calculate the angular velocity and total force
including second-order corrections for particles executing a few specific trajectories that have been studied experimentally, as well as the pre-
dicted trajectory for a particle being directed by a known time-dependent forcing protocol.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0126835

I. INTRODUCTION

Understanding the movement of isolated single spheres through
viscoelastic fluids is a canonical problem that has been of ongoing
interest for several decades among researchers in many fields. A wide
variety of both experimental and theoretical research has been con-
ducted to advance our understanding of flows around spheres in
many circumstances,1–4 including sedimentation,5,6 rotation,7,8 and
immersion in a shear flow.9–11 These fundamental studies have myriad
potential applications, ranging from understanding industrially rele-
vant processes like sedimentation of spherical particles from viscoelas-
tic matrix fluids to modeling the locomotion of microorganisms.
Theoretical and numerical studies have employed a broad array of
techniques; many of these studies have involved the use of a key
method in our work, which is the use of asymptotic expansions to
derive analytical approximations for the first corrections to the veloci-
ties, pressures, and stresses in weakly viscoelastic fluids.

Key prior studies in this field using such expansion techniques
include seminal work by Hanswalter Giesekus in the 1960s,12,13 in
which he used ordered fluid expansions of progressively higher order to

derive analytical solutions for the velocity and pressure profiles around
a sphere moving steadily through a viscoelastic fluid, as well as the
resulting drag force. Though previous work using such methods existed
at the time, including foundational work by Leslie and Tanner,14 he was
the first researcher to publish a correct result for such a calculation,15

and since his original work, many other studies have been conducted
into the motion of spheres through such fluids, which rely on similar
methods.11 In addition to his work using ordered expansions, many
subsequent researchers have used Giesekus’ eponymous constitutive
model to describe the rheology of the complex fluids they are studying.
Originally published in 1966,16 and brought to a wider audience in
1982,17 the Giesekus model for dilute polymer solutions is one of the
most widely used constitutive equations for viscoelastic liquids due to
its ability to capture empirically observed phenomena like shear-
thinning, non-zero normal stress differences, and bounded extensional
viscosity despite its relative simplicity.18 The model has since been used
to describe a variety of real fluids,19,20 including both the dilute polymer
solutions for which it was originally formulated21–23 and other visco-
elastic fluids like aqueous gum solutions24 and blood plasma.25
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While the steady motion of spheres in viscoelastic fluids has been
subject to extensive analytical study,1,2,26,27 the problem of unsteady
motion has received less attention. The studies that do exist regarding
unsteady motions have also largely been limited to one-dimensional
movement.28–31 However, there are several real-world applications in
which a particle is being driven in more complex trajectories by mag-
netic, optical, or electrical fields. These include the development of
guided nano/micro-robots,32–34 the characterization of materials using
optically or magnetically trapped particles,35 and precision-controlled
directed assembly of structured materials,36 including applications in
which these particles are immersed in viscoelastic fluids.37–39 Spheres
being controlled by such external fields can be directed in 2D and 3D
trajectories, and we will show in this study that there are several cir-
cumstances in which considering both the translational and rotational
components of the flow arising from a 2D particle trajectory is neces-
sary for obtaining a thorough understanding of relevant force–velocity
or force–displacement relationships.

In this work, we derive analytical solutions for the time-
dependent movement of a small, isolated, torque-free sphere through
a weakly viscoelastic fluid in a trajectory that is not limited to transla-
tion in a single direction. The mathematical model for this system is
described in detail in Sec. II. In Sec. III, we derive expressions for the
particle rotation arising from an arbitrary movement of this type, as
well as the additional corrections to the force arising from the coupling
of the particle rotation with the translation in each direction of motion.
We will define two dimensionless parameters, a Weissenberg number
and a Deborah number, to measure the relative importance of flow
nonlinearity and unsteadiness, respectively.40,41 The predicted correc-
tion to the force for various prescribed trajectories will be analyzed in
a series of contour plots examining the relative effects of Weissenberg
number, Deborah number, and the Giesekus mobility parameter a in
Sec. IV. Also in Sec. IV, we will use the general solution we derive to
compute the angular velocity and total force exerted on torque-free
particles executing some specific trajectories of interest. We also exam-
ine the problem of predicting the trajectory of a particle in response to
some externally applied force by inverting and integrating the expres-
sion for the predicted force in response to an imposed particle velocity.
We will use this to examine the trajectory of a particle subjected to a
specific, non-trivial time-dependent external force.

II. PROBLEM DEFINITION

A small, solid, torque-free spherical particle of radius a is sub-
merged in an incompressible, isothermal viscoelastic fluid and sub-
jected to an arbitrary two-dimensional, time-dependent flow at low
Reynolds number (Re ¼ qVca=g0 � 1), where Vc and tc are the char-
acteristic velocity and time scales for the prescribed time-dependent
motion. In the low-Reynolds number limit with an a priori unknown
Strouhal number (Sr ¼ tcVc=a), the governing equations for the sys-
tem are as follows:

Re
Sr
@vðr; tÞ
@t

¼ �rpðr; tÞ þ br2vðr; tÞ þ rspðr; tÞ; (1a)

r � vðr; tÞ ¼ 0; (1b)

and in order to neglect the partial time derivative of velocity, we
require Sr�Re. This is a reasonable limitation to impose for this
problem, as the Reynolds number and Strouhal number values for rep-
resentative systems of microscale particle motion36,37 indicate that the

Reynolds number will almost always be significantly smaller than the
Strouhal number for such flows, with typical Re �10�10–10�6 and Sr
�10�1–102. With this limitation met, the final momentum balance is
given by

br2vðr; tÞ þ r � spðr; tÞ � rpðr; tÞ ¼ 0; (2)

in which the following terms are defined: spðr; tÞ is the polymeric
stress scaled by g0Vc=a, where Vc is the characteristic velocity of the
particle, a is the particle radius, and g0 is the total zero-shear viscosity
defined as g0 ¼ gs þ gp with gs being the Newtonian solvent viscosity
and gp being the polymeric viscosity; pðr; tÞ is the pressure scaled by
g0Vc=a; vðr; tÞ is the velocity scaled by the characteristic velocity; and
b is the dimensionless Newtonian viscosity gs=g0 such that
ð1� bÞ ¼ gp=g0. The position vector r is centered on the particle, and
the notation jrj ¼ r will be used throughout. All times are scaled by a
characteristic timescale tc, whose appropriate definition will depend on
the flow being considered; appropriate choices of time and velocity
scales for the problems studied in this paper will be discussed later in
this section.

The evolution equation for the polymeric stress in Eq. (2) must
now be defined. The polymeric stress sp can be described by a wide
variety of constitutive models depending on the fluid behavior desired
or the specific complex fluid being modeled. In this case, we will use
the Giesekus model to describe the polymeric stress, which in dimen-
sionless form can be written as

spðr; tÞ þ De
@spðr; tÞ
@t

þWi aðspðr; tÞ � spðr; tÞÞ þ vðr; tÞ � rspðr; tÞ
�

�ðrvTðr; tÞ � spðr; tÞ þ spðr; tÞ � rvðr; tÞÞ
�
¼ 2ð1� bÞeðr; tÞ;

(3)

where eðr; tÞ ¼ 1=2ðrvðr; tÞ þ rvTðr; tÞÞ and a is the dimensionless
Giesekus mobility parameter quantifying the extent of shear-thinning
and the magnitude of the second normal stress differences in the fluid.
The Weissenberg number Wi and Deborah number De will be dis-
cussed further later in this section.

Two other key quantities of interest in this work will be the net
force and the torque on the particle arising from the prescribed
motion. The force exerted on the particle by the fluid is defined as

FðtÞ ¼
ð
S
n � pðr; tÞ þ 2beðr; tÞ þ spðr; tÞ
� �

jr¼1 dS; (4)

where the surface traction is evaluated at the sphere surface, given by
r¼ 1 in the dimensionless form. The torque is

TðtÞ ¼
ð
S
r� pðr; tÞIþ 2beðr; tÞ þ spðr; tÞ

� �
jr¼1 � n dS; (5)

where in both cases dS is the surface of the spherical particle with an
outward-facing normal n.

With the general mathematical model established, boundary con-
ditions for a flow with arbitrary velocities in the e1 and e2 directions
are as follows:

vðr !1; tÞ ¼ V1ðtÞe1 þ V2ðtÞe2; (6a)

pðr !1; tÞ ¼ 0; (6b)

and the torque-free condition
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TðtÞ ¼
ð
S
r� pðr; tÞIþ 2beðr; tÞ þ spðr; tÞ

� ���
r¼1 � n dS ¼ 0; (6c)

as well as no-slip and no-penetration conditions applied at the surface
of the sphere

vðr ¼ 1; tÞ � n ¼ 0; (6d)

vðr ¼ 1; tÞ ¼ XðtÞ � n: (6e)

In this case, the frame of reference is centered on the particle, so
the velocity boundary conditions are applied at r !1. For the equiva-
lent problem of a particle moving through a quiescent fluid, the velocity
boundary conditions in Eq. (6a) would be opposite in sign and applied
at the surface, resulting in a velocity ~vðr; tÞ ¼ vðr; tÞ � v1 instead. In
the case we are working with, in which the frame of reference is centered
on the particle, the far-field, imposed velocity consists in general of com-
ponents in both the e1 and e2 directions, with time variations described
by V1ðtÞ and V2ðtÞ, respectively. So, for example, in the circular particle
trajectory shown in 1(a), the particle’s velocity will be the derivative of
its position, and as it is moving through a quiescent fluid, the appropri-
ate boundary conditions would be

V1ðr !1Þ ¼ 2pfR sinð2pftÞ;
V2ðr !1Þ ¼ �2pfR cosð2pftÞ;

(7)

and the torque-free condition described in Eq. (6c) gives rise to the
rotation described in Eq. (6e), described by some time-dependent
angular velocity term XðtÞ, which must be calculated based on the
interaction of the two imposed flow fields.

In this initial formulation, we have explicitly included the argu-
ment for each term, for example, writing spðr; tÞ; vðr; tÞ; pðr; tÞ to
emphasize that these are time-dependent quantities. However, for the
sake of brevity and compactness of equations, throughout the rest of
this work we will not do so, and variables with no diacritical mark
above them should be understood to be time- and space-dependent.
When terms with different arguments are introduced, for example, the
frequency-dependent term v̂ðr;xÞ, the arguments will again initially
be included and clearly described in the text in their first instance, and
they will then be indicated by the corresponding diacritical mark going
forward.

In the above equations and throughout, Wi and De refer to the
Weissenberg and Deborah numbers, respectively, which have the fol-
lowing definitions:

De ¼ k
tc

Wi ¼ kVc

a
; (8)

where k is the single characteristic relaxation time of the Giesekus
model describing the viscoelastic fluid. The Weissenberg number Wi
provides a relative measure of the magnitude of the nonlinear elastic
and viscous forces in the fluid, and De is a measure of the flow
unsteadiness, defined as a ratio of the relaxation time of the fluid to a
representative process timescale tc, which we define as the timescale on
which the flow is changing; Vc is defined as the maximum absolute
value of the far-field velocity field Vðr !1; tÞ.

For example, we consider a circular trajectory as shown in
Fig. 1(a), where the frequency of the particle motion is 2pf and the
radius of the circular trajectory is R. In this case, an appropriate
choice of Vc would be Vc ¼ 2pfR, and tc ¼ 1=ð2pf Þ may be chosen

as an appropriate timescale. In this case, De ¼ 2pf k and Wi
¼ 2pf kR=a ¼ DeðR=aÞ. For the sinusoidal trajectory shown in Fig.
1(b), the characteristic timescale tc would again be tc ¼ 1=ð2pf Þ, and
an appropriate velocity scale may be Vc ¼ 2pfY0. These two forms lead
to an essentially identical definition of the Weissenberg and Deborah
numbers as in the case of a circular trajectory, with the trajectory radius
R for the circular case instead replaced by the amplitude Y0 for the case
of an oscillatory sinusoidal trajectory as shown in Fig. 1(b).

We can once again closely consider the case of the circular trajec-
tory in Fig. 1 in order to better understand the interplay of the
Weissenberg number, Deborah number, and the ratio of the particle
radius to the trajectory radius, a/R, which we will henceforth refer to
as the “radius ratio” (when referring to the ratio R/a, we will use the
term “inverse radius ratio”). Figure 2 shows an operating space in
which the solutions derived in this work are valid. As indicated by the
green arrows at the center of the diagram, increasing the Weissenberg
number increases nonlinearity, while increasing the Deborah number
(moving along the diagonal of this figure) increases unsteadiness.

FIG. 1. A wide variety of 2D particle trajectories can be analyzed using the solu-
tions derived in this work, including (a) a particle moving in a circle with some
known radius R, and (b) a particle moving in a sinusoidal pattern with a displace-
ment Y0.
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As such, the x axis of this figure—the case of Wi ¼ 0, or full
linearity—represents Stokes flows of Newtonian fluids. Conversely,
the y axis represents the case of increasing nonlinearity in the limit
of the radius ratio a=R! 0, meaning that the radius of the trajec-
tory is far greater than the radius of the particle. This case is asymp-
totically equivalent to that of a one-dimensional translation
through a viscoelastic fluid, which has been studied previously.6,31

Similarly, as indicated by the dashed line at a radius ratio of
a=R ¼ 1, once the radius of the trajectory is the same as, or smaller
than, the particle radius (a=R > 1), the motion overall can be
increasingly well approximated as simple particle rotation in a vis-
coelastic fluid.7 However, moving away from either axis into the
central portion of the figure introduces both fluid nonlinearity and
flow unsteadiness, and both particle rotation and translation as well
as their coupling must be considered in this region to fully charac-
terize the flow.

In Sec. III, we will derive the rate of particle rotation and the
leading-order force correction arising from rotation–translation
coupling very generally for an arbitrary particle velocity. However,
we will return to the example of a circular trajectory in Sec. IV and
more closely examine the interplay of the fluid nonlinearity and
flow unsteadiness described by the Weissenberg and Deborah
numbers.

III. SOLUTION METHODS

To evaluate general solutions to this class of problems for 2D
motions of spherical particles through viscoelastic fluids, we make
use of techniques developed in our previous work analyzing the
unsteady motion of particles in a simpler 1D trajectory.31 In brief,

we use an asymptotic expansion of the governing equations in pow-
ers of the Weissenberg number. We then use correspondence rela-
tionships to connect the steady-state solutions of the equations at
various orders to the frequency-dependent solutions at those orders,
and then use the Lorentz reciprocal theorem42 to calculate the inte-
grated force and torque at higher orders using only information
from lower-order solutions. The final solution at each order will
include an expression for the angular velocity of a particle undergo-
ing an arbitrary 2D translation and the correction to the force as a
function of the Weissenberg and Deborah numbers exerted on the
particle arising from the coupling of this rotation with the particle’s
translation.

We write the asymptotic expansion quite generally as

X ¼
X1
n¼0

WiðnÞXðnÞ; (9a)

X ¼ Xð0Þ þWiXð1Þ þWi2Xð2Þ þ � � � (9b)

where X represents the variables in the problem: v, p, sp, e, F, and T. It
is worth noting here that throughout the text, the term “leading order”
will be used to describe terms ofOð1Þ, orOðWi0Þ, “first order” is used
to indicate the first correction appearing atOðWiÞ, etc.

We can now formulate the governing equations at each order in
the expansion

br2vðnÞ þ r � sðnÞp þrpðnÞ ¼ 0; (10a)

r � vðnÞ ¼ 0; (10b)

as well as the constitutive equation

FIG. 2. The accessible “operating space”
for describing a particle moving in a circu-
lar trajectory using the methods outlined in
this work is shown as a function of dimen-
sionless parameters Wi; De, and the
radius ratio a/R. The red dashed line on
the left indicates the limit in which these
flows can be approximated a simple 1D
translation through an elastic fluid, and the
blue dashed line on the right indicates
where they can be approximated as sim-
ple rotation.
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s
ðnÞ
p þ De

@s
ðnÞ
p

@t
þ
Xn�1
m¼1

aðsðn�mÞp � sðmÞp Þþvðn�mÞ � rs
ðmÞ
p

h

�ðrvðn�mÞT � sðmÞp þs
ðmÞ
p � rvðn�mÞTÞ

i
¼ 2ð1� bÞeðnÞ; (11)

where the summation term is used to collect all of the combinations of
terms that result in total order n for n � 3.

In addition to the general, time-dependent equations, we will also
be particularly interested in two specific cases of this problem: at
steady state, and in the frequency domain. In both of these cases, the
governing equations and boundary conditions will be formally the
same as in the time-dependent case, though the polymeric stress will
change depending on the case in question. Going forward, steady-state
variables will be indicated with a tilde [e.g., ~spðrÞ], and the correspond-
ing frequency-dependent ones with a caret [e.g., ŝpðr;xÞ]. In the
steady-state case, the polymeric stress is

~s
ðnÞ
p ðrÞ þ

Xn�1
m¼1

að~sðn�mÞp ðrÞ � ~sðmÞp ðrÞÞþ~vðn�mÞðrÞ � r~s
ðmÞ
p ðrÞ

h

�ðr~vðn�mÞTðrÞ � ~sðmÞp ðrÞþ~s
ðmÞ
p ðrÞ � r~vðn�mÞðrÞÞ

i
¼ 2ð1� bÞ~eðnÞ:

(12)

Frequency-dependent variables are defined as the Fourier trans-
form of their time-dependent counterparts. For any variable X, the
relationship between time-dependent and frequency-dependent quan-
tities is

X̂ðxÞ ¼ F XðtÞ½ 	 ¼
ð1
�1

XðtÞe�ixtdt; (13)

and so, in the frequency-dependent case, the polymeric stress is

ŝðnÞp ðr;xÞ ¼ vðxÞ
�
2ð1� bÞêðnÞðr;xÞ

�
Xn�1
m¼1

aðŝðn�mÞp ðr;xÞ 
 ŝðmÞp ðr;xÞÞ
h

þ v̂ðn�mÞðr;xÞ 
 rŝðmÞp ðr;xÞ

� ðrv̂ðn�mÞTðr;xÞ 
 ŝðmÞp ðr;xÞ

þ ŝðmÞp ðr;xÞ 
 rv̂ðn�mÞðr;xÞÞ
i�
; (14)

where the term vðxÞ ¼ 1=ð1þ ixDeÞ scales the polymeric contribu-
tion to the complex viscosity, and the symbol 
 denotes a convolution
of two terms. Moving forward, the calculations performed will primar-
ily involve the frequency–space terms, and we will once again begin
omitting explicit indications of the appropriate arguments for each
variable and denoting their time or frequency dependence only by
their respective diacritical marks (carets for frequency-dependent
terms) or lack thereof (for time-dependent terms).

A. Leading-order solution

We proceed with our calculations in terms of the frequency-
dependent variables due to their greater convenience for analyzing
time-dependent quantities. At Oð1Þ, or leading order, we recover the
Stokes solution, whose governing equations in frequency space are

br2v̂ð0Þ þ r � ŝð0Þp �rp̂
ð0Þ ¼ 0; (15a)

r � v̂ð0Þ ¼ 0; (15b)

and the constitutive equation is

ŝð0Þp ¼ 2vðxÞð1� bÞêð0Þ; (16)

and finally, the boundary conditions are

v̂ð0Þðr !1Þ ¼ V̂ 1ðxÞe1 þ V̂ 2ðxÞe2; (17a)

v̂ð0Þðr ¼ 1Þ ¼ X̂ðxÞe3; (17b)

p̂ð0Þðr !1Þ ¼ 0; (17c)

and the torque-free conditionð
S
r� p̂ð0ÞI þ 2bê þ ŝð0Þp

h i���
r¼1
� n dS ¼ 0; (17d)

where V̂ 1ðxÞ¼F ½V1ðtÞ	; V̂ 2ðxÞ¼F ½V2ðtÞ	, and X̂ðxÞ¼F ½XðtÞ	,
withF ½
	 indicating a Fourier transform.

The frequency–space variables in these equations can be related
to their steady-state counterparts by application of a correspondence
relationship.43 However, the multi-directional aspect of this particular
flow requires additional notation to indicate which components of the
flow are related to which imposed flow direction. For example, at lead-

ing order, we can write v̂ð0Þ ¼ v̂ð0Þ1 þ v̂
ð0Þ
2 where v̂ð0Þ1 is the velocity

contribution driven by the imposed flow in the e1 direction, and v̂
ð0Þ
2

is the contribution driven by the imposed flow in the e2 direction. The
same convention applies to both steady-state and frequency–space
variables. At higher orders, at which point coupling of flow fields gives
rise to variables with contributions arising from multiple flow direc-
tions, additional subscripts would be needed (e.g., ŝp1;2 indicating a
stress component impacted by both velocities directed in the e1 and e2
directions). With this in hand, we can establish the leading-order cor-
respondence relationships

v̂
ð0Þ
i ¼ V̂ iðxÞ~vð0Þi ; (18a)

p̂ð0Þi ¼ V̂ iðxÞg
ðxÞ~pð0Þi ; (18b)

ŝ
ð0Þ
p;i ¼ V̂ iðxÞvðxÞ~sð0Þp;i ; (18c)

where i ¼ f1; 2; 3g, indicating terms governed by each of the flow
directions. The term g
ðxÞ is the complex viscosity of the fluid,
defined as bþ ð1� bÞvðxÞ ¼ g
ðxÞ, where again vðxÞ ¼ 1=
ð1þ ixDeÞ.

The steady-state solutions for the velocity and pressure profiles in
dimensionless form at leading order [i.e., OðWi0Þ] are the well-known
solutions for flow of a Newtonian fluid around a sphere44

~vð0Þi ðrÞ ¼ Vj �
3
4r

dij þ
rirj
r2

� �
þ 1
4r3

dij �
3rirj
r2

� �" #
Vj; (19a)

~pð0Þi ðrÞ ¼
3rj
2r3

Vj; (19b)

where j ¼ f1; 2g and Vj is thus the imposed velocity in the e1 and e2
directions. The velocities in each direction are, at this order, superim-
posed and non-interacting. Finally, the dimensionless, frequency-
dependent force at this order is simply

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 123110 (2022); doi: 10.1063/5.0126835 34, 123110-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


F̂
ð0ÞðxÞ ¼ 6pg
ðxÞðV̂ 1ðxÞe1 þ V̂ 2ðxÞe2Þ: (20)

As will be the case throughout this work, if the time-dependent
force is the desired quantity, one can simply take the inverse Fourier
transform of this frequency-dependent solution. The inverse Fourier
transform of a transformed variable f̂ ðxÞ is given by

f ðtÞ ¼ 1
2p

ð1
�1

f̂ ðxÞeixt dx; (21)

and we will use this formulation of the time-dependent force to ana-
lyze some specific flows in Sec. IV.

B. Calculation of angular velocity

While the velocity fields at leading order are superimposable and
non-interacting, at higher orders this is no longer true, and they can
couple and give rise to a net particle rotation. We can calculate this
rotation by first determining the torque on the particle that would
arise at orderOðWiÞ from the interactions of theOð1Þ flow fields gen-
erated by movement in the e1 and e2 directions with each other. Since
the particle is torque-free, this must be exactly balanced by its rotation.

We can use the Lorentz reciprocal theorem to formulate an
expression that allows us to calculate the torque on the particle arising
at OðWiÞ using only Oð1Þ terms. We do this by first defining an arbi-
trary auxiliary flow v̂ 0 with a pressure profile p̂0. This flow will
have the boundary conditions v̂ 0ðr ¼ 1Þ ¼ X0 � r ¼ U0; v̂ 0ðr !1Þ
¼ 0; p̂0ðr !1Þ ¼ 0. The deviatoric stress in this flow is
ŝ0 ¼ 2g
ðxÞe0, where g
ðxÞ is the complex viscosity normalized by
the total zero-shear viscosity. The rate of strain is e0 ¼ X0 � SðrÞ, where
SðrÞ is a third rank tensor known from the solution for simple rotation
of a particle in a Newtonian fluid

SijkðrÞ ¼
�3
r5
ðeikmrmrj þ ejkmrmriÞ; (22)

where eijk is the Levi-Civita alternating symbol.18 We can then calculate
the torque by constructing a standard reciprocal theorem argumentð

V
r � ð�p̂ð1ÞIþ 2bêð1Þ þ ŝð1Þp

h i
� v̂ 0 dr

¼
ð
V
r � ð�p̂0Iþ s0Þ
� �

� v̂ð1Þ dr; (23)

with V indicating the volume of fluid around the particle. Some rear-
rangement of terms, application of the divergence theorem, and sev-
eral algebraic steps result in a fairly simple expression for the torque

Tð1Þ ¼
ð
V

SðrÞ : ðŝð1Þp � 2vðxÞêð1ÞÞ dr: (24)

We can now calculate the first-order contribution to the torque
Tð1Þ solely using terms whose definitions we already know, from both
the leading-order solution for translation and the solution for a rotat-
ing sphere in a Newtonian fluid, which we use to define the term SðrÞ.
The term ŝð1Þp � 2vðxÞêð1Þ in Eq. (24) can be determined simply from
Eq. (14) for the case where n¼ 2

ŝð1Þp � 2vðxÞêð1Þ ¼ �aðŝð0Þp 
 ŝð0Þp Þ þ v̂ð0Þ 
 rŝð0Þp

�ðrv̂ð0ÞT 
 ŝð0Þp þ ŝð0Þp 
 rv̂ð0ÞÞ: (25)

Using the definition of torque in Eq. (24) and the correspondence
relationships as defined in Eq. (18), we arrive at the following equation
for the additional contribution to the torque atOðWiÞ:

Tð1Þ ¼ vðxÞ V̂ 1ðxÞ 
 vðxÞV̂ 2ðxÞ
� �� �

�
ð
V

SðrÞ : að~sð0Þp;1 � ~s
ð0Þ
p;2Þ þ ~v

ð0Þ
1 � r~s

ð0Þ
p;2

	

� 1
2
ð~vð0ÞT1 ðrÞ � ~sð0Þp;2 þ ~s

ð0Þ
p;2 � ~v

ð0Þ
1 Þ


dr

þvðxÞ V̂ 2ðxÞ 
 vðxÞV̂ 1ðxÞ
� �� �

�
ð
V

SðrÞ : að~sð0Þp;2 � ~s
ð0Þ
p;1Þ þ ~v

ð0Þ
2 � r~s

ð0Þ
p;1

	

� 1
2
ð~vð0ÞT2 ðrÞ � ~sð0Þp;1 þ ~s

ð0Þ
p;1 � ~v

ð0Þ
2 Þ


dr: (26)

Upon evaluation of the integrals in Eq. (26) using the symbolic
solver Mathematica and the Einstein notation plugin EinS,45 we arrive
at a simpler expression for the first-order, or OðWiÞ, correction to the
torque

T̂
ð1Þ ¼ 27pð1� bÞ

20
vðxÞ V̂ 2ðxÞ 
 vðxÞV̂ 1ðxÞ

� �� ��
� V̂ 1ðxÞ 
 vðxÞV̂ 2ðxÞ

� �� ��
e3;

with the torque acting in the e3 direction as expected. The particle is
torque-free, and thus, the torque generated by the interacting flow
fields must be exactly counteracted by the particle’s rotation. We can
thus solve for the particle rotation by the following balance:

T̂
ð0Þ þWiT̂

ð1Þ ¼ 0; (27)

where the leading-order dimensionless torque (Tð0ÞðxÞ=a2g0VcÞ for a
sphere in a viscous Newtonian fluid undergoing a rotation at fre-
quency X̂ has the well-known form44

T̂
ð0Þ ¼ 8pg
ðxÞX̂ðxÞe3: (28)

So, we now have defined all terms of the torque balance

8pg
ðxÞX̂ðxÞ ¼ �Wi
27pð1� bÞ

20
vðxÞ V̂ 2ðxÞ 
 vðxÞV̂ 1ðxÞ

� �� ��
� V̂ 1ðxÞ 
 vðxÞV̂ 2ðxÞ

� �� ��
;

meaning that the angular velocity of the particle is

X̂ðxÞ ¼ � 27ð1� bÞWi
160g
ðxÞ vðxÞ V̂ 2ðxÞ 
 vðxÞV̂ 1ðxÞ

� �� ��
� V̂ 1ðxÞ 
 vðxÞV̂ 2ðxÞ

� �� ��
: (29)

This form of the angular velocity X̂ðxÞ arising from the first
effects of elasticity can now be used to both model particle rotation in
arbitrary 2D flows and to predict the force correction arising from
interactions between particle translation and rotation.

C. Calculation of force

The leading-order correction to the force can be calculated using
a similar procedure as that for calculating the particle rate of rotation.
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We begin by constructing a reciprocal theorem argument using
the known flow field components and an arbitrary auxiliary flow,
v̂ 0 and pressure p̂0 such that v̂ 0ðr !1Þ ¼ 0; p̂0ðr !1Þ ¼ 0, and
v̂ 0ðr ¼ 1Þ ¼ u0. The deviatoric stress in this flow is ŝ0 ¼ 2g
ðxÞe0,
where the rate of strain tensor e0 ¼ u0 � RðrÞ and the tensor RðrÞ,
defined in Eq. (32), is known from the solution to the leading-order
problem. We can once again construct a standard reciprocal theorem
argument ð

V
r � ð�p̂ð1ÞIþ 2bêð1Þ þ ŝð1Þp

h i
� v̂ 0 dr

¼
ð
V
r � ð�p̂0Iþ ŝ0Þ
� �

� v̂ð1Þ dr: (30)

As with the above calculation of torque by a similar method, there
are several intermediate steps involving further simplification, applica-
tion of the divergence theorem, and some tedious algebra. Eventually,
we arrive at a simple expression for the correction to the force

F̂
ð1ÞðxÞ ¼

ð
V
RðrÞ : ðŝð1Þp ðxÞ � 2vðxÞêð1Þðr;xÞÞ dr; (31)

in which we know RðrÞ from the leading-order solution, correspond-
ing to Stokes flow of a Newtonian fluid

RijkðrÞ ¼
3
4r3

�rkdijþ
1
r2

3rirjrkþ ridjkþ rjdikþ rkdij
� �

� 5
r4
rirjrk

� �
;

(32)

and the term ŝð1Þp ðr;xÞ � 2vðxÞêð1Þðr;xÞÞ is defined entirely in terms
of the leading-order solution, as shown in Eq. (25).

We can thus now evaluate the predicted force correction arising
from the interaction of translation and rotation. Note that throughout
this derivation up to this point, terms here are indicated as being first
order, as they come from interactions of two leading-order, or Stokes,
flow fields. However, the overall contribution to the force here will be
OðWi2Þ, due to its dependence on the particle rotation, which scales
with Wi as shown in Eq. (29). Thus, the contribution to the force in

Eq. (33) will be denoted F̂
ð2Þ

rather than F̂
ð1Þ

going forward.
The final form of this OðWi2Þ force term arising from

translation–rotation coupling is

F̂
2ð Þ ¼ v xð Þ X̂ xð Þ 
 V̂ 1 xð Þv xð Þ

� �� �ð
V
R rð Þ : a ~s 0ð Þ

p;2 � ~s
0ð Þ
p;1

� �
þ ~v 0ð Þ

3 � r~s 0ð Þ
p;1 �

1
2

~v 0ð ÞT
3 � ~s 0ð Þ

p;1 þ ~s 0ð Þ
p;1 � ~v

0ð Þ
3

� �	 

dr

þv xð Þ V̂ 1 xð Þ 
 X̂ xð Þv xð Þ
h i� �ð

V
R rð Þ : a ~s 0ð Þ

p;1 � ~s
0ð Þ
p;3

� �
þ ~v 0ð Þ

1 � r~s 0ð Þ
p;3 �

1
2

~v 0ð ÞT
1 � ~s 0ð Þ

p;3 þ ~s 0ð Þ
p;3 � ~v

0ð Þ
1

� �	 

dr

þv xð Þ X̂ xð Þ 
 V̂ 2 xð Þv xð Þ
� �� �ð

V
R rð Þ : a ~s 0ð Þ

p;2 � ~s
0ð Þ
p;2

� �
þ ~v 0ð Þ

3 � r~s 0ð Þ
p;2 �

1
2

~v 0ð ÞT
3 � ~s 0ð Þ

p;2 þ ~s 0ð Þ
p;2 � ~v

0ð Þ
3

� �	 

dr

þv xð Þ V̂ 2 xð Þ 
 X̂ xð Þv xð Þ
h i� �ð

V
R rð Þ : a ~s 0ð Þ

p;2 � ~s
0ð Þ
p;3

� �
þ ~v 0ð Þ

2 � r~s 0ð Þ
p;3 �

1
2

~v 0ð ÞT
2 � ~s 0ð Þ

p;3 þ ~s 0ð Þ
p;3 � ~v

0ð Þ
2

� �	 

dr; (33)

which, when the integrals are evaluated, can be expressed in a simpler
form

F̂
2ð Þ ¼ 27p 1�bð Þ

40
v xð Þ V̂ 2 xð Þ 
 v xð ÞX̂ xð Þ

h i� �
e1

h
� V̂ 1 xð Þ 
 v xð ÞX̂ xð Þ

h i� �
e2
i
þ 63p 1�bð Þ

40
v xð Þ

� X̂ xð Þ 
 v xð ÞV̂ 2 xð Þ
� �� �

e1� X̂ xð Þ 
 v xð ÞV̂ 1 xð Þ
� �� �

e2
h i

:

(34)

For a complete expression for the force correction arising at
OðWi2Þ, terms arising purely from the translational motion in the e1
and e2 directions must also be considered. These terms have been
derived previously for the Johnson–Segalman and Giesekus models,31

and are replicated for the Giesekus model in Appendix A [see Eq.
(A1)]. These purely translational components will be included in the
total force corrections for all of the example flows in Sec. IV.

IV. EXAMPLE FLOWS

To demonstrate how the general solutions derived in this work
can be used to better understand some specific particle trajectories, we

provide three examples: predicting the angular velocity and total force
exerted on a particle moving in a circular trajectory, as shown in Fig.
1(a) and described in Fig. 2; predicting the variations in the angular
velocity and total force exerted on a particle moving in a sinusoidal
trajectory, as shown in Fig. 1(b); and predicting the trajectory of a par-
ticle subjected to an external time-varying force in a user-controlled
elliptical pattern.

A. Circular trajectory

A particle of radius a moving in a circular trajectory with radius
R at a frequency 2pf , as seen in Fig. 1, has a path described as

x1ðtÞ ¼ R cosð2pftÞ; x2ðtÞ ¼ R sinð2pftÞ; (35)

which results in a time-varying velocity

V1ðtÞ ¼ �2pfR sinð2pftÞ; V2ðtÞ ¼ 2pfR cosð2pftÞ: (36)

The expressions derived for the angular velocity and the force
involve the frequency–space definitions for the imposed velocities,
which in this case are
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V̂ 1ðxÞ ¼ i2p2fRðdð2pf � xÞ � dð2pf þ xÞÞ
V̂ 2ðxÞ ¼ 2p2fRðdð2pf � xÞ þ dð2pf þ xÞÞ:

(37)

Note that 2pf , rather than the more conventional x, is used here to
denote the frequency of the particle’s traversal of the circular trajectory to
avoid confusion as x has been used throughout this work to denote the
frequency variable in the Fourier-space terms. In this case, the characteris-
tic velocity Vc on which terms will be made dimensionless is Vc ¼ 2pfR.
Assuming that the viscoelastic fluid has a single relaxation time k, we thus
define the Deborah number for this unsteady flow to be De ¼ 2pf k.
Using the imposed velocity of the particle defined in Eq. (37), we can cal-
culate the force exerted on this particle at leading order, the particle’s
angular velocity and the total correction to the force arising at second
order in theWeissenberg number [i.e., atOðWi2Þ], Wi ¼ DeðR=aÞ.

First and most straightforwardly, we can calculate the time-
dependent force on this particle at leading order using Eq. (20). While
Eq. (2) is the expression for the force in frequency space, this can easily
be converted to the time domain by taking its inverse Fourier trans-
formF�1½F̂ð0ÞðxÞ	 ¼ Fð0ÞðtÞ. The result is then

Fð0ÞðtÞ ¼ �6p
�

b sin ð2pftÞ

þ ð1� bÞ sin ð2pftÞ�Decos ð2pftÞ
1þDe2

�
e1

þ6p

�
bcos ð2pftÞþ ð1� bÞ cos ð2pftÞþDesin ð2pftÞ

1þDe2

�
e2:

(38)

The angular velocity of the particle can be calculated using Eq.
(29). Once again, Eq. (29) describes a frequency–space quantity, which
can be converted to the time domain with an inverse Fourier trans-
formF�1½X̂ðxÞ	 ¼ XðtÞ.

In this case, the angular velocity is found to be a constant, as
would be expected for a circular trajectory

X ¼ �27Wið1� bÞ
160

De
ð1þ De2Þ e3;

¼ �27ð1� bÞ
160

R
a

� �
De2

1þ De2

� �
e3: (39)

The angular velocity, in this case, is influenced by the Deborah
and Weissenberg numbers, as well as the dimensionless polymeric
contribution to the viscosity ð1� bÞ. Substitution of the definition of
the Weissenberg number in this case, Wi ¼ ðR=aÞDe, results in an
expression for the angular velocity dependent on the viscosity, inverse
radius ratio R/a, and Deborah number. We will primarily examine this
problem in the context of these dimensionless groups.

Finally, the expression for the second-order, or OðWi2Þ, correc-
tion to the time-dependent force—derived using an inverse Fourier
transform of its frequency-dependent definition Eq. (34)—arising
from coupling between particle rotation and translation is

F 2ð Þ tð Þ ¼ 243p
6400

R
a

� �2
De2 1�bð Þ2

De2þ 1ð Þ3

� 3De3þ 17Deð Þsin 2pftð Þþ 10� 4De2ð Þcos 2pftð Þ
� �

e1
�
� 3De3þ 17Deð Þcos 2pftð Þ� 10� 4De2ð Þsin 2pftð Þ
� �

e2
�
:

(40)

The full expression for the force correction arising from purely
translational components is too long and unwieldy to print here, but
can be provided upon request to the authors via email. However, we
can examine its relative influence on the overall force when compared
to the force correction arising from rotation–translation coupling.
Figure 3 shows the maximum contribution of rotation–translation
coupling components of the force and purely translational compo-
nents. We show the maximum contributions here because, due to the
dynamic nature of the solution, the value of each of these corrections
varies significantly over time; the maximum gives a clear picture of the
magnitude of the force correction throughout the duration of particle
motion. From this figure, it is clear that both corrections are highly
dependent on the radius ratio a/R. When a/R is very small, the radius
of the particle trajectory is much greater than the radius of the particle
itself and the trajectory is well-approximated by pure translation. In
this limit, the translational component of the force correction domi-
nates. However, as a/R increases, the approximation as pure transla-
tion is no longer valid, and the component of the force correction
arising from coupling of rotation- and translation-dependent terms
becomes increasingly important. It eventually surpasses the purely
translational component and thus also must be considered to achieve
an accurate understanding of this particle motion. Note that at higher
values of the radius ratio a/R, it appears in Fig. 3 that the translation–
rotation component of the force correction exceeds the total force cor-
rection, which is counter-intuitive. However, this is simply because the
values shown here are the maximum absolute value of time-dependent
functions. Thus, this would indicate at the points in time where the
magnitude of the translation–rotation component of the force exceeds
the total value of the force correction, it is being counteracted by the
translational component of the force correction.

FIG. 3. Maximum total correction to the force arising at second order in
Weissenberg number for a Giesekus fluid with a ¼ 0:3 and b ¼ 0:001 is shown
as a function of the radius ratio a/R for a constant Wi ¼ 1. This shows that the pre-
dominant contribution at low a/R comes from translation–translation coupling, and
that at high a/R, there is a transition to predominant contributions from rotation–-
translation coupling.
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We can also examine the time-dependent force exerted on a par-
ticle undergoing a specific circular trajectory in a Giesekus fluid. In
this case, we examine a fluid with a moderate mobility parameter of
a ¼ 0:3 and b ¼ 0:001, indicating gp � gs, as is often the case for
semidilute or entangled polymer solutions.23,46 We can examine a spe-
cific radius ratio a=R ¼ 0:5 and a Deborah number De ¼ 0:5, mean-
ing the Weissenberg number is Wi ¼ 1, which approaches the upper
limit at which this solution is expected to be valid. Figures 4 and 5
show the dynamic variations in the total force exerted on the particle
in the e1 and e2 directions for a short segment of dimensionless time
t=tc. Once again, we can see that for this case the magnitude of the
force corrections arising from rotation–translation coupling and pure
translation are of roughly equal magnitude, and overall contribute to a

small but noticeable decrease in the magnitude of the total force when
compared to the leading-order solution on its own; for this specific
and relatively moderate set of parameters, the total decrease in the
force is, on average, about 4%.

While investigating specific flows in a fluid with known parame-
ters can be illuminating, we also have, as shown in Fig. 2, a broad oper-
ating space in which these parameters can be varied. In order to best
understand how those parameters affect the total force being exerted
on the particle, we can examine contour plots of the maximum total
correction to the force at second order in Wi, orOðWi2Þ, as a function
of the Deborah number De, the inverse radius ratio R/a, and the
Giesekus mobility parameter a. Figure 6 shows how these contours
vary for a fixed value of mobility parameter a ¼ 0:3, with De varying
from 0 to 0.5 and the inverse radius ratio R/a varying from 0 to 2, or
from the case in which we can approximate the motion as pure rota-
tion to that of a particle moving in a trajectory with a radius twice that
of its own. Because the Weissenberg number is Wi ¼ ðR=aÞDe and
the force correction is directly dependent on Wi, we would intuitively
expect the greatest magnitude of the force correction to occur in the
top-right area of the plot, which represents the highest values of Wi.
However, we can also see from this plot that increasing the inverse
radius ratio ðR=aÞ at a constant De and increasing De at a constant
inverse radius ratio have slightly different impacts on the magnitude
of the force correction, with increase in the inverse radius ratio result-
ing in a more rapid increase in overall force correction than with an
increase in De.

In Fig. 7, we vary the mobility parameter a between a ¼ 0, or the
Oldroyd-B model, and a ¼ 0:5—commonly recognized to be the
physically realistic limit of the Giesekus model18—and the Deborah
number from 0 to 1 for a constant Weissenberg number of Wi ¼ 1.
The constant Wi is maintained by adjusting the inverse radius ratio to
compensate for changes in Deborah number, to satisfy the constraint
Wi � DeðR=aÞ. Here we can see that at any value of the Deborah

FIG. 5. The second-order contributions to the force are shown here for a Deborah
number De ¼ 0:5, inverse radius ratio R=a ¼ 2; b ¼ 0:001, and a ¼ 0:3, indicat-
ing that the corrections arising from translation–translation and translation–rotation
coupling are on the same order of magnitude.

FIG. 6. Contours of the maximum total correction to the force arising at second
order in Wi for a Giesekus fluid with a ¼ 0:3 and b ¼ 0:001 is shown as a function
of the Deborah number De and inverse radius ratio R/a. The Weissenberg number
Wi ¼ DeðR=aÞ increases toward the upper right corner.

FIG. 4. Variation in the total force over time for a particle moving in a circular trajec-
tory with De ¼ 0:5, inverse radius ratio R=a ¼ 2; b ¼ 0:001, and a ¼ 0:3 is
shown, as well as individual components of that force arising at leading order
(Oð1Þ) in addition to the second-order (OðWi2Þ) corrections from both translation–
translation and translation–rotation coupling.
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number, increasing the mobility number, or increasing the extent of
shear thinning, increases the predicted magnitude of the force correc-
tion and thus enhances the total effect of nonlinear viscoelasticity in
the system. We see the opposite trend in this case for unsteady effects,
where at a given value of a, the total magnitude of the force correction
tends to decrease with increasing Deborah number above De ¼ 0:1.
This can be attributed to the adjustment of R/a to maintain the
Weissenberg number Wi ¼ 1; as seen in Fig. 3, the total magnitude of
the force correction is higher at larger values of R/a due to the larger
contributions from the purely translational terms.

We can perform a similar analysis for a system in which, again,
the mobility parameter a and the Deborah number both range from 0
to 0.5, but rather than Weissenberg number being held constant the
inverse radius ratio is held constant at R=a ¼ 2 (meaning the radius of
the particle trajectory is twice the radius of the particle itself), so that
Wi ¼ 2De. Contours of the maximum total correction to the force for
such a system are shown in Fig. 8. In this case, once again, the increase
in Wi with increasing De would be intuitively expected to increase the
magnitude of the force correction regardless of other factors. However,
we can also see that at a given De (and thus given Wi), increasing the
mobility parameter again enhances the effects of elasticity in the sys-
tem, and that this effect is more drastic at lower values of the mobility
parameter a.

Finally, it can be useful to examine our solution in various limits,
to ensure we recover the expected behavior in those limits and to bet-
ter understand how this solution relates to other, previously known
ones. For example, in the limit of R=a!1 and De! 0, we would
expect to recover the solution of steady 1D motion of a spherical parti-
cle through a viscoelastic fluid. Indeed, in this limit, the angular veloc-
ity X! 0, indicating that the particle does not rotate, and the second-
order force correction arising from rotation–translation coupling sub-
sequently goes to 0 as well. Only the purely translational term remains,

as would be expected for this case, and this purely translational term
has been shown to be in agreement with previously derived solutions
in relevant limits.6,31 Additionally, for the case of b! 1, we would
expect to recover the Stokes solution for a Newtonian fluid, which we
do, as all nonlinear terms scale directly with 1� b and thus go to zero,
and the terms at leading order arising from the polymeric stress scale
with 1� b as well and also go to zero. The solution thus behaves the
way we would expect in these limits, providing some indication that
we are accurately capturing the flow behavior.

B. Sinusoidal trajectory

Due to the generality of the solution derived in Sec. III, we can
use the same exact steps used in Sec. IVA to analyze a totally different
particle trajectory. We will now look at a particle moving in a sinusoi-
dal trajectory as shown in Fig. 1(b), which has a time-dependent
position

r1ðtÞ ¼ V0t; r2ðtÞ ¼ Y0 sin ð2pftÞ; (41)

which results in a sinusoidally varying velocity

v1ðtÞ ¼ V0; v2ðtÞ ¼ 2pfY0 cos ð2pftÞ; (42)

which, in frequency space, has the form

v̂1ðxÞ ¼ V0dðxÞ;
v̂2ðxÞ ¼ p2pfY0ðdð2pf � xÞ þ dð2pf þ xÞÞ:

(43)

In this case, the characteristic velocity Vc can once again be
defined as Vc ¼ 2pfY0, as described in Sec. II. For simplicity, we will
assume throughout this example that the constant velocity in the e1
direction is given by V0 ¼ 2pfY0, though that does not necessarily
have to be the case. Using V0 6¼ 2pfY0 would simply result in an addi-
tional constant scaling factor in some terms. The Weissenberg and

FIG. 8. Maximum total correction to the force arising at second order in Wi for a
Giesekus fluid with b ¼ 0:001 is shown as a function of the Deborah number De
and mobility parameter a for a constant inverse radius ratio R=a ¼ 2, resulting in a
variable Weissenberg number Wi ¼ DeðR=aÞ ¼ 2De.

FIG. 7. Contours of the maximum total correction to the force arising at second
order in Wi for a Giesekus fluid with b ¼ 0:001 are shown as a function of the
Deborah number and mobility parameter a for a constant value of Wi ¼ 1, indicat-
ing that the inverse radius ratio R/a is adjusted as needed for changing De to main-
tain a constant Weissenberg number via the relationship Wi=De ¼ R=a.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 34, 123110 (2022); doi: 10.1063/5.0126835 34, 123110-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Deborah numbers in this case, following the formulation of Sec. II,
will be De ¼ 2pf k and Wi ¼ 2pf kY0=a ¼ DeðY0=aÞ, with the term
Y0=a serving a similar function as the inverse radius ratio R/a in the
case of a circular trajectory.

As was the case for the circular trajectory, we can use this imposed
velocity to calculate the leading-order force exerted on the particle, the
angular velocity, and the second-order correction to the force arising
from both pure translation and translation–rotation coupling.

The dimensionless force at leading order in Wi, or the Stokes
flow limit, exerted on a particle undergoing this trajectory is

FðtÞ ¼ 6pe1 þ 6p

 
b cos ð2pftÞ

þ ð1� bÞ cos ð2pftÞ þ De sin ð2pftÞ
1þ De2

!
e2; (44)

which, in the limit of De! 0, recovers the Stokes flow solution, and
in the limit of b! 1 recovers the behavior of a Newtonian fluid.

In this case, the angular velocity of the particle is time-dependent
and takes the form

XðtÞ ¼ �27ð1� bÞWi
160

�De ð1þ bÞDecos ð2pftÞ þ ðDe2b� 1Þ sin ð2pftÞ
� �

1þDe2ð Þ 1þDe2b2
� � ; (45)

or, when the Weissenberg number is eliminated in favor of the
Deborah number and the geometric ratio Y0=a

XðtÞ ¼ �27ð1� bÞ
160

Y0

a

� �

� De2 ð1þ bÞDe cos ð2pftÞ þ ðDe2b� 1Þ sin ð2pftÞ
� �

1þ De2ð Þ 1þ De2b2
� � :

(46)

We can visualize the particle rotation over the course of the par-
ticle’s trajectory, as shown in Fig. 9. The top panel of this figure shows
the particle trajectory over time, while the bottom panel tracks the
angular velocity over that same time period. Lining the bottom of this
figure is a series of particle “snapshots” over the time frame consid-
ered, with the black line providing a fixed reference for the particle’s
rotational position. It is clear from both the y-axis scale of the bottom
panel and the particle snapshots at the bottom of this figure that the
actual angular velocity and resultant displacement of the particle aris-
ing from its changing rotation is rather small, especially since the
direction of rotation changes back and forth throughout the cyclical
movement, resulting in an average net rotational displacement of zero.
However, even though the rotation only results in these small, cyclic
displacements, it does significantly impact the total correction to the
force. The force correction arising from the rotation–translation cou-
pling at second order (OðWi2Þ) is

F1 ¼
�243pð1� bÞ2De Deð10bþ 3Þ 4De4 þ 5De2 þ 1ð Þ þ ð5b� 6ÞDe4 � ð37bþ 38ÞDe2 þ 10

� �
sin ð4pftÞ

� �
12800 De2 þ 1ð Þ2 4De2 þ 1ð Þ b2De2 þ 1

� �
� 243pð1� bÞ2De 5De2 þ 2b 3De4 þ 19De2 � 5ð Þ � 37

� �
cos ð4pftÞ

12800 De2 þ 1ð Þ2 4De2 þ 1ð Þ b2De2 þ 1
� � ;

F2 ¼
243pð1� bÞ2De De b De2 � 1ð Þ � 2

� �
cos ð2pftÞ � ð2bþ 1ÞDe2 � 1

� �
sin ð2pftÞ

� �
640 De2 þ 1ð Þ2 b2De2 þ 1

� � :

(47)

Once again, the expression for the force correction arising from
purely translational term is very long and not included here for conve-
nience, but will be made available upon request to the authors via
email. However, we can use similar techniques as in Sec. IVA to visu-
alize the contributions to the force at second order, by using a series of
contour plots to examine how different variables affect the total force.

Figure 10 shows the contours of the maximum value of leading-
order correction of the force as a function of De and the Giesekus
mobility parameter a. The top row of the figure shows this correction
for a constant Weissenberg number Wi ¼ 1, and the bottom row for a
variable Wi ¼ 2De, with the e1 component of the force on the left and
the e2 component on the right in each case.

In both cases, similar trends can be observed as in the case of a
circular trajectory. For example, increasing the mobility parameter at
any given De again increases the impact of elasticity and shear-
thinning and results in a greater correction to the overall force. Similar

trends also emerge as were observed in the circular case for the depen-
dence on De in the case of constant Wi ¼ 1, which in this case indi-
cates that increasing De must be compensated for by decreasing the
ratio of the trajectory amplitude to particle radius Y0=a. Increasing De
in the constant Weissenberg number (Wi ¼ 1) case tends, in fact, to
reduce the total force correction at a given mobility parameter. This
effect is observed only in the e2 direction, and interestingly only at
mobility parameters a > 0:1, below which increasing De at constant
Wi causes an increase in the total force correction. For the case of a
variable Weissenberg number of Wi ¼ 2De, or the bottom row in Fig.
10, we again observe that, as would be intuitively expected, the maxi-
mum force correction increases with De, since that corresponds
directly to an increase in the Weissenberg number. We can also see
that the impact of this increase in Deborah number is more drastic at
lower values of the Giesekus mobility parameter, for both the e1 and
e2 directions.
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C. Particle trajectory in response to an externally
applied time-dependent force

Here, we describe a particle trajectory in which a force is being
applied to the particle through some external field, as in cases of opti-
cally or magnetically controlled particle movement.32,37 In such cases,
the force–velocity relationship described in Eqs. (33) and (A1) can be
inverted and used to predict how the particle will move under the
influence of a controlled external force. The method for inverting this
relationship has been previously described31,47 and is summarized in
Appendix B.

In this case, we will examine a forcing protocol described as

F1ðtÞ ¼ M cos ð2pftÞ; F2ðtÞ ¼ M sin ð2pft þ wÞ; (48)

or, in frequency space

F̂ 1ðxÞ ¼ Mpðdð2pf � xÞ þ dð2pf þ xÞÞ; (49)

F̂ 2ðxÞ ¼ �ipMðeiwdð2pf � xÞ � e�iwdð2pf þ xÞÞ; (50)

in which M indicates the magnitude of the force, 2pf indicates fre-
quency, and w represents a phase shift between the e1 and e2 compo-
nents of the imposed force such that for w ¼ 0 a circular trajectory
may be expected, and at w ¼ p=2, we return to a simple, time-
dependent 1D translation.

In this case, since it is a force being imposed, not a velocity, it is
useful to briefly reconsider the definition of the Weissenberg number
in this context. Since it depends on the particle’s velocity, which should
scale as Vc ¼ 2pfR ¼ M=ag0, the Weissenberg number is defined as
Wi ¼ Mk=g0a

2. As the characteristic timescale tc in this case is again

tc ¼ 1=ð2pf Þ, the definition of the Deborah number remains 2pf k, as
it was in previous examples.

In this case, the primary quantity of interest is the expected tra-
jectory of the particle. While the inverted force–velocity relationship
obviously produces a velocity, the trajectory can be determined by
integrating that velocity from 0 to an arbitrary time t. Following that
protocol, we can calculate the displacement at leading order in Wi, or
Oð1Þ:

x1ðtÞ ¼
ð1� bÞDe cos ð2pftÞ þ ð1þ De2Þb sin ð2pftÞ

Deð1þ De2b2Þ
;

x2ðtÞ ¼ �
2 sin ðpftÞ

Deð1þ ðDebÞ2Þ
ðð1� bÞDe cos ðpft � wÞ

þð1þ De2bÞ sinðpft � wÞÞ:

(51)

As is the case for the velocity-driven circular trajectory described
in Sec. IVA, the rotation of the particle is a constant and has a very
similar form to Eq. (39)

X ¼ �27Wið1� bÞ
160

De cos ðwÞ
1þ De2

e3; (52)

which when w ¼ 0 reduces to the predicted rotation for a circular tra-
jectory, as would be expected; at w ¼ p=2, no rotation is predicted,
which is also consistent with unidirectional translation.

The second-order, or OðWi2Þ, contributions to the total expres-
sion for displacement are once again too lengthy to be printed, but we
can visualize the predicted particle displacement. Figures 11–13 show
the predicted displacement for particles under the influence of an
external force described above for a variety of parameter values.

In Fig. 11, we show the predicted trajectory for a particle starting
at ð1;�1Þ, moving through a fluid with a Giesekus mobility parameter
of a ¼ 0:3, a Deborah number of De ¼ 0:5, and a Weissenberg num-
ber of Wi ¼ 1. The trajectory is shown for a variety of values of w, cor-
responding to increasingly elliptical trajectories as w increases. Such
trajectories have been experimentally considered by Spatafora-Salazar
and coworkers.36 We see, as we would expect, a circular trajectory for
w ¼ 0, a straight line for w ¼ p=2, and ellipses of various aspect ratios
for intermediate values of w. As a result of the particle’s starting loca-
tion and the introduced “lag” between the imposed force and immedi-
ately resulting displacement, all of these trajectories intersect at the
starting point (1;�1), but this intersection is not necessarily at a vertex
of the elliptical trajectory.

We can also examine the case of varying De (i.e., the oscillatory
frequency) with a constant phase shift w, as shown in Fig. 12. This fig-
ure shows the predicted trajectory for a particle subjected to this forc-
ing protocol with w ¼ 0 and Wi ¼ 1 in a fluid with parameters
b ¼ 0:001 and a ¼ 0:3. One can see clearly in this figure that increas-
ing the Deborah number decreases the predicted radius of the par-
ticle’s trajectory if we keep the Weissenberg number fixed, recovering
the behavior predicted in the velocity-controlled flows examined in
previous examples, which indicated that for a constant Wi, any
increase in De must have an attendant decrease in R=a: Additionally,
we can see in this figure that the predicted total radius of the particle’s
trajectory is larger for the cases in which correction terms have been
included than for the leading-order solution, which is also consistent
with our observations in Sec. IVA. In that case, we saw that the inclu-
sion of the second-order correction terms decreased the total magnitude

FIG. 9. Angular velocity over time for a particle executing a sinusoidal trajectory,
with particle position shown in the upper panel of the figure and the angular velocity
in the lower panel. The circles at the bottom of the figure are snapshots of the par-
ticle’s rotational position over time, with the black line providing a reference. For
animated gif version of this figure, see: http://tinyurl.com/3h32286y.
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of the expected force exerted on a particle executing a specific trajectory;
it follows logically that for the case of a known force being exerted on
the particle, the result will be a greater overall displacement.

Though its impact is shown clearly in Fig. 12, inclusion of the
second-order terms cause the trajectory to differ from the significantly
simpler leading-order predictions in even more dramatic ways for
phase shifts of w 6¼ 0. Figure 13 shows the trajectory including only
the leading-order terms as well as the trajectory involving second-
order corrections for a relatively small phase shift of w ¼ p=12 and
moderate Deborah number of De ¼ 0:5 for a particle immersed in a
fluid with a ¼ 0:3 and b ¼ 0:001. The small phase shift if w ¼ p=12
results in a nearly circular elliptical trajectory with a low aspect ratio.
While the total radius of the predicted trajectory is slightly (though
noticeably) larger for the full solution including the second-order cor-
rection terms, it is clearly offset from the leading-order solution at an
angle. This indicates that incorporating the second-order corrections
calculated in this work is key for accurate prediction of a particle’s

FIG. 10. (a) Contours of the maximum total correction to the force in the e1 direction for a constant Wi ¼ 1 as De and a are varied; (b) contours of the maximum total correc-
tion to the force in the e2 direction for a constant Wi ¼ 1; (c) contours of the maximum total correction to the force in the e1 direction for a constant Wi ¼ 2De; and (d) contours
of the maximum total correction to the force in the e2 direction for a constant Wi ¼ 2De.

FIG. 11. The predicted trajectory of a particle subjected to the described time-dependent
forcing protocol for a variety of w values, with De ¼ 0:5; b ¼ 0:001, and a ¼ 0:3.
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trajectory when subjected to a given forcing protocol, as not only will
the radius of the particle’s trajectory be larger than the simple leading-
order approximation would indicate, but the trajectory will likely also be
offset or rotated from the leading-order Stokes-flow approximation.

V. DISCUSSION

In this work, we have demonstrated a method for decomposing
and systematically analyzing the time-dependent 2D translation of a

small spherical particle moving through a viscoelastic fluid described
by the Giesekus model. An asymptotic expansion of the governing
equations in terms of the Weissenberg number was described, which
is valid in the limit of lowWeissenberg number or weak elasticity. The
known leading-order, or Stokes-flow, solutions are related to the fre-
quency–space variables using correspondence relationships. Using the
Lorentz reciprocal theorem, the angular velocity X of the particle aris-
ing from interactions of the leading-order velocity fields and correc-
tion to the force arising at OðWi2Þ from coupling of particle rotation
and translation are calculated. The derived solution for the angular
velocity and the force correction are very general and can be used, in
principle, to describe a variety of different particle trajectories; they are
also invertible and can be used to describe particle movement resulting
from an imposed force.

We have also shown how this general solution can be used to cal-
culate the angular velocity and total force exerted on a particle executing
specific two-dimensional motions, namely, a circular trajectory and a
sinusoidal trajectory. Our analysis illustrates that for many 2D particle
trajectories, it is crucial to consider the rotation–translation coupling to
achieve an accurate analysis of the particle motion. We showed in detail
how interplay of the Deborah number, the Weissenberg number, radius
ratio, and the Giesekus mobility parameter a affects the predicted cor-
rection to the force arising at OðWi2Þ. Additionally, we have shown
that this method can be used to predict the trajectory over time for a
particle subject to some known forcing protocol and that the particle’s
predicted trajectory deviates substantially from the simpler leading-
order approximation not only in size but in a positional offset. This indi-
cates that in medical applications, such as micro- or nanorobotics,
where high accuracy is needed in steering and predicting the trajectory a
particle will take through a viscoelastic fluid when subjected to some
external force, it is key to consider these higher-order correction terms.

The directed motion of spherical particles in nanorobotics and
other applications often relies on trial-and-error testing for determining
how the object of interest will move due to a given force. The solutions
derived in this work open up the possibility that, given an appropriate
model and some calibration to match fluid properties, the particle’s tra-
jectory can be predicted in response to a given force without the need
for extensive trial-and-error. This also highlights the generality of this
method; once a model and appropriate parameters are known for a fluid
of interest, its response to any arbitrary forcing protocol within the limi-
tations of this work—namely, low Reynolds numbers Re� 1 and low
Weissenberg numbersWi � 1—can be predicted.
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APPENDIX A: FORCE CORRECTION FOR PURE
TRANSLATION

Throughout this work, the total correction to the force at sec-
ond order has included the purely translational component of that
force in addition to the rotation–translation component. This force
contribution was derived in a prior paper about 1D translation in
viscoelastic fluids31 and is reproduced here. The form of the
translation-only portions of the force at second order for a Giesekus
fluid with a single relaxation time is

F̂
ð2Þ
i ðxÞ ¼

6pð1� aÞð1� bÞ2a
175

vðxÞ V̂ iðxÞvðxÞ
� �


 vðxÞ vðxÞ V̂ iðxÞ 
 V̂ iðxÞvðxÞ
� �

gðxÞ

 !" # !

þ 5652pð1� bÞ2a2
2275

vðxÞ V̂ iðxÞvðxÞ
� �


 V̂ iðxÞvðxÞ 
 V̂ iðxÞvðxÞ
� �� �

� 5652pð1� bÞ2a2
2275

vðxÞ V̂ iðxÞvðxÞ
� �


 vðxÞðV̂ iðxÞ 
 V̂ iðxÞvðxÞÞ
� �� �

� 3pð1� aÞð1� bÞ2

175
vðxÞ vðxÞðV̂ iðxÞ 
 V̂ iðxÞvðxÞ

� �
Þ

g
ðxÞ

" #

 V̂ iðxÞvðxÞ
� � !

� 2826pað1� bÞ
2275

vðxÞ V̂ iðxÞ 
 vðxÞðV̂ iðxÞvðxÞÞ
� �


 V̂ iðxÞvðxÞ
� �� �

� 3pð1� aÞð1� bÞ2

175
vðxÞ V̂ iðxÞ 


vðxÞvðxÞ V̂ iðxÞ 
 V̂ iðxÞvðxÞ
� �

g
ðxÞ

" # !

� 1548pð1� bÞ
25025

vðxÞ V̂ iðxÞ 
 vðxÞ V̂ iðxÞ 
 V̂ iðxÞvðxÞ
� �� �� �

; (A1)

where i indicates the direction of translation. This solution collapses to
the solution for an Oldroyd-B fluid for the case a¼ 0.

APPENDIX B: SECOND-ORDER VELOCITY IN TERMS
OF AN IMPOSED FORCE

In order to calculate the predicted particle displacement in
response to a known external force as discussed in Sec. IVC, it is
necessary first to calculate the predicted velocity in response to a

known force by inverting the force–velocity relationships in Eqs.
(34) and (A1).

This derivation is simpler when convolution terms, such as
those in Eq. (34), are re-expressed as integrals using the following
relationship:

f̂ ðxÞ
 ĝ ðxÞ¼ 1
2p

ð ð1
�1

f̂ ðx1Þĝðx2Þdðx�x1�x2Þdx1dx2; (B1)

such that, for example, Eq. (34) would appear as

F̂
ð2Þ ¼ 1

ð2pÞ2
e1

ð ð ð1
�1

K1ðx1;x2;x3Þ V̂ 2ðx1ÞV̂ 2ðx2ÞV̂ 1ðx3Þ � V̂ 2ðx1ÞV̂ 1ðx2ÞV̂ 2ðx3Þ
� �

dx1dx2dx3

� 1

ð2pÞ2
e1

ð ð ð1
�1

K2ðx1;x2;x3Þ V̂ 2ðx1ÞV̂ 1ðx2ÞV̂ 2ðx3Þ � V̂ 1ðx1ÞV̂ 2ðx2ÞV̂ 2ðx3Þ
� �

dx1dx2dx3

þ 1

ð2pÞ2
e2

ð ð ð1
�1

K1ðx1;x2;x3Þ V̂ 1ðx1ÞV̂ 2ðx2ÞV̂ 1ðx3Þ � V̂ 1ðx1ÞV̂ 1ðx2ÞV̂ 2ðx3Þ
� �

dx1dx2dx3

� 1

ð2pÞ2
e2

ð ð ð1
�1

K2ðx1;x2;x3Þ V̂ 2ðx1ÞV̂ 1ðx2ÞV̂ 1ðx3Þ � V̂ 1ðx1ÞV̂ 2ðx2ÞV̂ 1ðx3Þ
� �

dx1dx2dx3 ; (B2)

where the transfer functions K1 and K2 take the form
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K1ðx1;x2;x3Þ ¼
�729ð1� bÞ2p

4000g
ðx1 þ x2 þ x3Þ
vðx1 þ x2 þ x3Þ

� vðx2 þ x3Þvðx2 þ x3Þvðx3Þ;

K2ðx1;x2;x3Þ ¼
�1701ð1� bÞ2p

4000g
ðx1 þ x2 þ x3Þ
vðx1 þ x2 þ x3Þ

� vðx1 þ x2Þvðx2Þvðx3Þ:

(B3)

Relationships of this type are used extensively in our previous
work studying 1D translation.31 For the purpose of the following
derivation, we will adopt the general notation used there, with
transfer functions n1ðxÞ and n3ðx1;x2;x3Þ being used to relate
velocity to a known, imposed force and f1ðxÞ and f3ðx1;x2;x3Þ
being used to relate force to a known, imposed velocity. Thus, the
force and velocity can be very generally represented as

F̂ðxÞ ¼ f1ðxÞv̂ðxÞ

þ
ð ð ð1

1
f3ðx1;x2;x3Þdðx� x1 � x2 � x3Þ

� v̂ðx1Þv̂ðx2Þv̂ðx3Þdx1dx2dx3; (B4)

v̂ðxÞ ¼ n1ðxÞF̂ðxÞ

þ
ð ð ð1

1
n3ðx1;x2;x3Þdðx� x1 � x2 � x3Þ

� F̂ðx1ÞF̂ðx2ÞF̂ðx3Þdx1dx2dx3: (B5)

where, for example, in this case the leading-order transfer function
f1ðxÞ ¼ 6pg
ðxÞ; this can be seen by inspection of Eq. (20).

The transfer functions n1ðxÞ; n3ðx1;x2;x3Þ and f1ðxÞ;
f3ðx1;x2;x3Þ can be related to one another through the following
method, and thus used to invert the force–velocity relationships in
Eqs. (34) and (A1) and calculate the velocity resulting from a
known, imposed force.

First, the force and velocity are both expanded as a power series in
some small parameter e, which to second order take the form

F̂ðxÞ ¼ F̂ 0 þ e2F̂ 2 þ Oðe4Þ; (B6a)

v̂ðxÞ ¼ v̂0 þ e2v̂2 þ Oðe4Þ; (B6b)

where only OðeÞ and Oðe2Þ terms are retained, as no non-zero
terms are expected at Oðe1Þ.

Substituting the expansions of F̂ and v̂ in Eqs. (B4) and (B5)
into the representation of velocity v̂ in Eq. (B6b) and retaining only
terms up to order Oðe2Þ yields the following expression:
v̂0 þ e2v̂2 ¼ n1ðxÞf1ðxÞv̂0ðxÞ þ e2n1ðxÞf1ðxÞv̂2ðxÞ

þe2n1ðxÞ
ð ð ð1

�1
f3ðx1;x2;x3Þdðx�

X
i

dðxiÞÞ

� v̂0ðx1Þv̂0ðx2Þv̂0ðx3Þdx1dx2dx3

þe2
ð ð ð1

1
n3ðx1;x2;x3Þf1ðx1Þf1ðx2Þf1ðx3Þ

� dðx�
X
i

dðxiÞÞv̂0ðx1Þv̂0ðx2Þv̂0ðx3Þdx1dx2dx3:

(B7)

Matching the terms at leading order in e, or Oð1Þ, gives a sim-
ple relationship between f1ðxÞ and n1ðxÞ,

n1ðxÞ ¼
1

f1ðxÞ
: (B8)

Matching terms at order Oðe2Þ can be simplified as

� 1
f1ðxÞ

ð ð ð1
�1

f3ðx1;x2;x3Þdðx�
X
i

dðxiÞÞ

� v̂0ðx1Þv̂0ðx2Þv̂0ðx3Þdx1dx2dx3

¼
ð ð ð1

1
n3ðx1;x2;x3Þf1ðx1Þf1ðx2Þf1ðx3Þ

� dðx�
X
i

dðxiÞÞv̂0ðx1Þv̂0ðx2Þv̂0ðx3Þdx1dx2dx3; (B9)

which, using the sifting property of the delta function, can be re-
expressed with fðxÞ moved inside the first integral

�
ð ð ð1

�1

f3ðx1;x2;x3Þ
f1ðx1 þ x2 þ x3Þ

dðx�
X
i

dðxiÞÞ

� v̂0ðx1Þv̂0ðx2Þv̂0ðx3Þdx1dx2dx3

¼
ð ð ð1

1
n3ðx1;x2;x3Þf1ðx1Þf1ðx2Þf1ðx3Þdðx�

X
i

dðxiÞÞ

� v̂0ðx1Þv̂0ðx2Þv̂0ðx3Þdx1dx2dx3: (B10)

Comparing the forms of these integrals, we can find the final
expression for n3ðx1;x2;x3Þ

n3ðx1;x2;x3Þ ¼
f3ðx1;x2;x3Þ

f1ðx1 þ x2 þ x3Þf1ðx1Þf1ðx2Þf1ðx3Þ
: (B11)

Using this method, we can express a second-order contribu-
tion to the velocity of particle subjected to a known external force
F̂ðxÞ ¼ F̂ 1ðxÞe1 þ F̂ 2ðxÞe2 arising from translation–rotation
coupling

v̂2 ¼
1

ð2pÞ2
e1

ð ð ð1
�1

H1ðx1;x2;x3Þ F̂ 2ðx1ÞF̂ 2ðx2ÞV̂ 1ðx3Þ
�

�F̂ 2ðx1ÞV̂ 1ðx2ÞF̂ 2ðx3Þ
�
dx1dx2dx3

� 1

ð2pÞ2
e1

ð ð ð1
�1

H2ðx1;x2;x3Þ F̂ 2ðx1ÞF̂ 1ðx2ÞF̂ 2ðx3Þ
�

�F̂ 1ðx1ÞF̂ 2ðx2ÞF̂ 2ðx3Þ
�
dx1dx2dx3

þ 1

ð2pÞ2
e2

ð ð ð1
�1

H1ðx1;x2;x3Þ F̂ 1ðx1ÞF̂ 2ðx2ÞF̂ 1ðx3Þ
�

�F̂ 1ðx1ÞF̂ 1ðx2ÞF̂ 2ðx3Þ
�
dx1dx2dx3

� 1

ð2pÞ2
e2

ð ð ð1
�1

H2ðx1;x2;x3Þ F̂ 2ðx1ÞV̂ 1ðx2ÞV̂ 1ðx3Þ
�

�F̂ 1ðx1ÞF̂ 2ðx2ÞF̂ 1ðx3Þ
�
dx1dx2dx3; (B12)

where the kernel functions in Eq. (B11) are given by

H1ðx1;x2;x3Þ ¼ �
K1ðx1;x2;x3Þ

N1ðx1 þ x2 þ x3ÞN1ðx1ÞN1ðx2ÞN1ðx3Þ
;

H2ðx1;x2;x3Þ ¼ �
K2ðx1;x2;x3Þ

N1ðx1 þ x2 þ x3ÞN1ðx1ÞN1ðx2ÞN1ðx3Þ
;
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where K1ðx1;x2;x3Þ and K2ðx1;x2;x3Þ are defined in Eq. (B3) and
N1ðxÞf1ðxÞ ¼ 6pg
ðxÞ, per Eq. (20). The same inversion rationale
can be applied to the purely translational component of the force–
velocity relationship in Eq. (A1) as well, allowing calculation of the tra-
jectory components arising from purely translational forces.
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