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ABSTRACT: Knotting is a prevalent phenomenon which
occurs in long polymer chains. We perform Brownian
dynamics simulations and single-molecule DNA experiments
to investigate knot untying in elongational fields that is
induced by the knot being convected off the chain. The
change in knot size as the knot moves off the chain and unties
causes a change in the effective Weissenberg number, which in
turn leads to a change in chain extension. Large-scale chain
conformational changes are observed in both simulations and
experiments for complex knots at low Weissenberg numbers (Wi). We investigate the knot untying time and untying-induced
change in extension for a range of knot types and field strengths. Simulations predict a quadratic relationship between the
change in extension due to knot untying and initial knot size for Wi ≥ 1.5. Due to the changes in chain extension as a knot
unties, the untying process can be diffusion- or convection-driven.

1. INTRODUCTION

Knots are common in our everyday lives, from tangled
earphones to sailing knots. In the microscopic world, knots are
also of important relevance, having been shown to occur
naturally in DNA1,2 and proteins.3,4 This is not surprising; it has
been theoretically proven that the knotting probability of a chain
approaches unity as the chain length tends to infinity, hence
knots are inevitably present in long polymer chains.5 The
probability of knot formation in polymers has been studied both
computationally6−8 and experimentally9,10 and found to be
relevant for length scales of interest. The ubiquity of knots in
polymers has generatedmuch interest in studying knots and how
knots affect the physical properties of polymers.
While knots are rigorously defined only for circular

chains,11,12 long chains with free ends can contain localized,
unambiguous knots, and the topologies of such chains can be
closed and defined algorithmically.13,14 Most studies on knotted
polymers to date have been computational in nature and have
explored a diverse range of topics, such as the equilibrium
behavior of polymer knots,15,16 translocation of knotted
polymers through narrow pores,17−21 and spontaneous knotting
and unknotting in linear polymers.22−26 More recently,
researchers have demonstrated experimental methods of
studying polymers with knots by introducing knots in
biomolecules via optical tweezers,27 compression in nano-
channels,28 and electric fields.29−34 This has enabled an
integrated computational and experimental approach to study-
ing knotted polymers, with notable examples being the diffusion
of knots along stretched DNA molecules under tension27,35,36

and in elongational fields.33,37

From a polymer physics standpoint, the presence of knots has
important consequences for overall polymer properties.

Mechanically, simulations have shown that a knot reduces the
strength of a polymer chain and that a knotted chain under
tension usually breaks at the knot entrance.38 Dynamically,
topological constraints imposed by entanglements in polymer
melts restrict chains to reptation along a tubelike region.39−42

The effect of knots on polymer dynamics makes it interesting to
study not only how molecules with knots behave but also how
the knot untying process changes polymer properties.
Furthermore, the knot untying process is relevant in the
development of next-generation genomic technologies that are
impaired by the presence of knots.43−45

Previous computational studies by our group have shown that
knots along linear chains in elongational fields can be untied via
two methods: convection off the chain beyond a critical length
scale from the center of the chain at high field strengths37 or
inducing the chain to undergo a stretch-coil transition, a sharp
conformational transition theoretically predicted and exper-
imentally observed near a critical strain rate,46,47 upon a step
decrease in strain rate.48 The former can be considered a
convection-driven (field-driven) knot untying regime and the
latter a diffusion-driven regime. There exists, however, an
intermediate regime of knot untying along stretched chains in
which single-molecule experiments mostly take place.33 In this
study, we use Brownian dynamics simulations to systematically
study the dynamics of knot untying in elongational fields that is
induced by the knot being convected off the chain at
intermediate field strengths. The knot untying process is
amenable to study by simulations because of the ability to
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simulate specific knot types and examine the dynamics with high
temporal and spatial resolution. We complement our
simulations with single-molecule DNA experiments to demon-
strate that the simulations predict a realistic phenomenon. This
work focuses on the chain dynamics as the knot unties and
considers a range of complex knot topologies and field strengths,
which differs from previous studies that examined the knot
translation mechanism37 and demonstrated changes in chain
conformation during knot untying for simple knots.48 We
subject molecules with a range of knot types to elongational
fields of different Weissenberg numbers (Wi) and observe the
transient dynamics of the chain during and after knot convection
off the chain. Specifically, we focus on the change in chain
extension induced by knot untying and the time required for a
knot to completely untie. We use scaling analysis and empirical
results to show that simulations predict a quadratic relationship
between the untying-induced change in extension and initial
knot size for Wi ≥ 1.5. While a knot is initially convected off the
chain by the elongational field, the untying process can be
diffusion- or convection-driven depending on the knot topology
and field strength.

2. METHODS
2.1. DNA Model. We used a Brownian dynamics approach to

simulate double-stranded DNA, which has been parametrized
extensively in the literature.35,49−51 The choice of DNA model for
our simulations is motivated by the prevalent use of DNA as a model
polymer in single-molecule experiments. The DNA molecule is
modeled as a linear bead−rod chain of N = 300 beads of diameter b
at positions ri, connected by N−1 rigid rods of length l = 10 nm (5
bonds per persistence length lp = 50 nm). To derive the governing
stochastic differential equation, we consider the form of all forces acting
on the system: bending, electrostatic, excluded volume, hydrodynamic,
constraint, and Brownian.
The semiflexible nature of DNA is enforced by accounting for

bending energy, given by
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where θi is the bending angle between bond i and bond i+1 and g = 4.81
kbT is chosen to set lp = 50 nm when l = 10 nm.35 Expressions for the
resulting bending force are given in Allison et al.49 A screened Debye−
Huckel potential is used to model the long-range electrostatics of
DNA−DNA interactions and is specified by
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where ν = 2.43 e/nm is the effective linear charge density of DNA at an
ionic strength of 10 mM, D is the dielectric constant of water, κ−1 is the
Debye length, and rij is the distance between beads i and j. At an ionic
strength of 10 mM, DNA has an effective width of∼16 nm and a Debye
length of ∼3 nm.10,52 The excluded volume potential, leading to short-
range repulsion interactions between beads, is enforced to prevent self-
crossings and is determined as
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where μ = 35 pN has been shown to result in a low frequency of chain
crossings35,53 and b = 2 nm is the bead diameter. The electrostatic and
excluded volume forces (Fe and Fev) can be obtained by taking the
derivatives of the respective energies. In this work, hydrodynamic
interactions between chain segments are neglected, so the drag force on
the ith bead is given by
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where ζ is the drag coefficient of a single bead and u(ri) is the
undisturbed solvent velocity. The constraint force is described by

= − − −T TF b bi
c

i i i i1 1 (5)

where bi is the unit vector of bond i and Tn is the tension in rod i that
enforces the constraint of constant bond length. The Brownian forces
are random forces that satisfy the fluctuation−dissipation theorem,
such that
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where δij is the Kronecker delta, I is the identity matrix, and Δt is the
simulation time step.

2.2. Numerical Simulation. With the neglect of chain inertia, the
forces on the beads sum to zero and results in the Langevin equation
that describes the motion of each bead:

ζ
= + + + + +
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u r F F F F F
d
d

( )
1

( )b e ev c bri
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To evaluate the bead positions at each time step, we performed a
predictor-corrector scheme described in detail by Liu et al.54 and used a
time step Δt = 5 × 10−3τd, where τd = l2ζ/kbT is the characteristic rod
diffusion time. Enforcing the rigid rod constraints gives rise to a system
of nonlinear equations for the rod tensionsTi, which we solved for using
Newton’s method.55

Figure 1. (a) Schematic of simulation setup: knotted (red) and unknotted (gray) regions of DNA extended in an elongational field. (b) Simulation
snapshots of an initially centered 81 knot being convected off a chain and untying in multiple steps at field strength Wi = 1.25. The 81 knot (red)
partially unties to a 61 knot (blue) and 41 knot (green) before completely untying.
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In the simulations, we tied a knot into the center of the polymer chain
and stretched the knotted chain in a planar elongational field of the form
u(ri) = ϵ(̇x ̂−y ̂)·ri, where ϵ ̇ is the strain rate and x̂ and y ̂ are unit vectors
parallel to the x and y axes, respectively (Figure 1a). The response of
molecules in elongational fields is characterized by the Weissenberg
number Wi = ϵτ̇, where τ is the longest relaxation time of the polymer
molecule and is determined by fitting the last 30% extension of an
initially stretched chain to a single-exponential decay. For a given set of
simulation parameters, the knotted chains were equilibrated at the
simulation conditions for 104τd. During equilibration, the positions of
the knots were held at the center of the chain via reptation moves, in
which a polymer segment would be cut off from one end of the chain
and appended to the other end. We ran the simulations for 2 × 107τd.
Figure 1b shows snapshots from a representative simulation run, in
which the initially centered knot is convected to the end of the chain
and proceeds to untie in multiple steps. The knotted region was colored
based on the topology identified algorithmically, as described in the
next section.
2.3. Knot Detection. Mathematically, knots are well-defined only

in closed, circular chains. To determine the topology of open chains, we
first closed the chains into a ring with an auxiliary arc by implementing
the minimally interfering closure scheme, in which the auxiliary arc is
constructed to minimize additional entanglement that may be
introduced during chain closure.13,14 The chain topology was then
determined by projecting the chain onto a plane parallel to the
extension axis, identifying all chain crossings and calculating the
Alexander polynomial.56 The knot position and boundaries of the knot
were identified by determining the smallest subset of the chain that
retained the topology of the whole chain via calculation of the
Alexander polynomial. To ensure that the knot boundaries identified
were not biased by the choice of plane projection, we repeated the
procedure over many projections along the extension axis and selected
the projection that resulted in the median knot size. Identifying the left
and right boundaries of the knot allowed for the computation of the
number of beads in the knotted region and the central bead of the knot.

The knot detection algorithm is also detailed in previous publications
from our group21,37,48,57 In this work, knot position is defined as the
projected distance between the central bead of the knotted region and
the first bead on the chain along the primary extension of the field, and
knot size refers to the fractional contour stored within the knot.

2.4. Experimental Method. The single-molecule DNA experi-
ments follow the general protocol in previous work from our group (see
the Supporting Information for detailed experimental method).32,34,48

Briefly, a solution of fluorescently stained, T4 DNA (stained contour =
77 μm) is loaded in a 2 μm tall cross-slot channel with electrodes at the
inlets and outlets. The longest relaxation time of T4 DNA was obtained
by fitting the last 30% extension of an initially stretched chain to a
single-exponential decay and determined to be τ = 2.1 s. We first pulsed
a square wave electric field of ∼1000 V/cm for ∼1s at 10 Hz in the
center of the channel to collapse the DNA into a compact globule,
which likely contains one or more knots in its interior.29,31−34 We next
applied a constant voltage drop to generate a planar elongational field
within the channel. We stretched the DNA at the field’s stagnation
point and recorded its dynamics over time. The knots appear as bright
regions of excess fluorescence on the extended chain. Although we do
not know the topologies of the knots generated, we can infer
information about knot complexity from the knot size, as determined
from the integrated fluorescence intensity in the knotted portion of the
chain.32,34 We note that the protocol for inducing knots in our
experiments does not allow for precise control over knot type and size,
hence we are unable to gather a large ensemble of molecules with the
same knot type or size and perform ensemble averaging.

3. RESULTS
3.1. Characteristics of Knot Untying Process. As a knot

convects off the chain in an elongational field, the knot grows in
size and the chain undergoes a decrease in extension (Figure
1b). When the knot reaches the end of the chain, depending on
the knot type and orientation, it can untie either completely or

Figure 2. Simulation results showing (a) chain extension, (b) knot size, and (c)Wieff as a function of time as the initially centered knot convects off the
chain and unties for chains with different knot types in an elongational field (Wi = 1.25). Curves are averaged over 50 simulation runs. The time axis has
been shifted such that the knot first reaches the end of the chain at t ̃ = 0. The dotted lines in (a) represent the steady-state chain extension for the
unknotted chain at Wi = 1.25 (top) andWi = 0 (bottom). (d) Chain extension, (e) knot size, and (f)Wieff as a function of time as the initially centered
81 knot convects off the chain and unties for chains in elongational fields of varying strengths. Curves are averaged over 50 simulation runs. The time
axis has been shifted such that the knot first reaches the end of the chain at t ̃= 0. The dotted line in (d) represents the equilibrium unknotted chain
extension.
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partially into a less complex knot, resulting in a change in the
calculated Alexander polynomial. See the Supporting Informa-
tion for representative simulation movies and the Supporting
Information for schematics of knot types studied. We plot in
Figure 2 (panels a and b) the chain extension and knot size for a
range of knot types convecting off a chain in an elongational field
of strength Wi = 1.25. In Figure 2 (panels d and e), we show
plots of chain extension and knot size for chains with an 81 knot
in elongational fields from Wi = 0.75 to Wi = 3 as the knot
convects off the chain and unties. All curves are averaged over 50
simulation runs and the time axis is shifted such that the knot
reaches the chain end at t ̃ = t/τd = 0. Chain extension is
determined as the projected distance along the primary axis of
extension of the field. As seen from Figure 2 (panels a and d), for
all knot types and allWi studied, the chain extension decreases as
the knot convects off the chain, reaches a minimum when the
knot reaches the chain end, and subsequently stretches back to
the steady-state chain extension for the unknotted chain. Figure
2 (panels b and e) shows the concurrent growth in knot size as
the knot is convected off the chain, with the knot size attaining a
maximum when the knot reaches the chain end and decreasing
as the knot partially unties. More complex knots and lower Wi
give rise to larger changes in knot size and chain extension
during the knot untying process. Furthermore, more complex
knots require more steps to untie, hence the chains take a longer
time to stretch to the unknot steady-state extension compared to
simpler knots at the same Wi.
We can understand the evolution in chain extension during

the knot untying process by considering the effective
Weissenberg number Wieff, defined for the Rouse regime as34,48

= −
ν+i

k
jjjjj

y
{
zzzzz

L
L

Wi Wi 1eff
knot

chain

1 2

(8)

where Lknot/Lchain is the fractional knot size and ν = 0.588 is the
excluded volume Flory exponent.58 Figure 2 (panels c and f)
shows Wieff as a function of time during the knot untying
process. As an initially centered knot convects off the chain in an
elongational field, the decrease in tension along the chain results
in an increase in knot size. This leads to a decrease in Wieff and,
consequently, a decrease in chain extension. When the knot
reaches the chain end, it begins to untie. Depending on the knot
topology and orientation, the knot can untie in either one or
multiple steps. As the knot unties, the knot size decreases,
leading to an increase in Wieff and, subsequently, an increase in
chain extension. After the knot fully unties, Wieff = Wi and the
chain stretches to the steady-state extension for the unknotted
chain. Such dynamics are not observed in knotted chains that
untie while held at constant tension (see Figure S3), affirming
that this phenomenon is attributable to a coupling with the
elongational field and not purely caused by end effects.
For the more complex knots studied at Wi = 1.25, such as the

91 and 101 knots, the knot size is large enough to result in
Wieff < 0.5 throughout the knot untying process, which leads to
the large deviation in chain extension from the unknot steady-
state extension. Similarly, for the smallerWi investigated, such as
Wi = 0.75 and Wi = 1.0, the resulting size of the 81 knot leads to
Wieff < 0.5 throughout the knot untying process, hence the chain
undergoes a significant change in extension as the knot unties.
Essentially, for large knots and low Wi, the resulting knot size is
sufficient to bring the molecule through the coil−stretch
transition as the knot unties, hence giving rise to large, transient
changes in chain conformation during the untying process.
To gain more insight into the untying process, we consider

individual chain trajectories. Figure 3 shows simulated traces of
molecules with an initially centered 81 knot convecting off the
chain and untying in elongational fields of varying strengths. The
knot position is defined as the projected distance between the

Figure 3. Individual simulation trajectories at different Wi. Knot position, knot ends position, fractional extension, and kymograph of chains with an
initially centered 81 knot from representative simulation trajectories in elongational fields (a) Wi = 1, (b) Wi = 2, and (c) Wi = 3. The black and red
points for knot position represent the points before and after the 81 knot first reaches the chain end, respectively. The green and blue points for knot
ends position refer to the left and right boundaries of the knot, respectively. The kymographs plot 1D chain projections vs time.
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Figure 4. Experimental results at a fixed Wi. (a) Chain extension over time of several DNAmolecules stretched in an elongational field (Wi = 1.75) as
the knots untie. The fractional knot sizes of themolecules, measured as the integrated fluorescence intensity of the knot when the chain was stretched at
Wi ∼ 3 divided by the integrated fluorescence intensity of the entire chain, are reported in the legend. The time scale of each trace is centered at the
point of minimum extension. The inset shows the same data at a wider range of times. (b) Five representative images of themolecule represented by the
black time trace. The scale bar is 5 μm.

Figure 5. Experimentally measured knot position, fractional knot size, fractional extension, and kymograph of chains during the untying process in
elongational fields (a) Wi = 1 and (b) Wi = 2. The fractional knot sizes, estimated as the integrated intensity of the knot when the chain is stretched at
Wi∼ 3, are 0.045 and 0.05 for (a) and (b), respectively. The black and red points for knot position and knot size represent the points before and after
the knot first becomes indistinguishable from the chain end, respectively. The kymographs plot 1D chain projections vs time.
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central bead of the knotted region and the first bead on the chain
along the primary extension of the field, with a knot position of
zero indicating that the knot is at the left end of the molecule.
The knot ends positions are the positions of the beads at the left
and right boundaries of the knot.
From Figure 3, we observe distinct qualitative differences in

the trajectories of molecules subjected to different field
strengths. First, as expected based on Figure 2d, the molecule
at Wi = 1 undergoes a more significant change in extension
during the knot untying process compared to the molecules at
Wi = 2 andWi = 3. Second, the knot appears to move around the
chain in a diffusive manner at low Wi, whereas it is clearly
convected off the chain in a certain direction at highWi. This can
be attributed to the chain being in the coiled versus elongated
state at low versus highWi, which is determined byWieff and can
be visualized from the kymographs, and suggests that the knot
untying process can be diffusion- or convection-driven. Third, at
low Wi, the knot tends to move inward upon partial untying,
while at high Wi, the knot tends to stay near the chain end as it
unties. This can be seen clearly from the plot of knot ends
position, with the right boundary of the knot moving inward
upon the knot reaching the chain end at Wi = 1. The knot tends
to move inward after partially untying at low Wi due to the
contour released from the relatively large knot upon the first
untying step. For the partial knot to fully untie, it then has to
move to the chain end again, hence it is unsurprising that the
same knot takes a longer time to untie at low Wi.
3.2. Experimental Observations. In this section, we

present individual experimental trajectories of knotted mole-
cules that undergo the unknotting process when stretched in
elongational fields. We highlight the difficulty in gathering large
ensembles of molecules with the same knot type and size
experimentally, hence experimental observations are based on
trajectories of chains with various knot types and sizes. Figure 4
displays experimental results for the change in extension of
several DNA molecules with a range of knot sizes as the knot is
convected off the chain in an elongational field Wi = 1.75. Each
trace represents one molecule and the time axis has been shifted
such that the chain is at minimum extension at t = 0. The
fractional knot sizes of the molecules are determined as the
integrated fluorescence intensity of the knot when the chain was
stretched at Wi ∼ 3 divided by the total integrated fluorescence
intensity of the chain. As seen from Figure 4a, large-scale
changes in extension during the knot untying process are also
observed experimentally. The nonmonotonic trend in extent of

conformational change with respect to knot size is likely due to
the lack of ensemble averaging for experimental results (see the
Supporting Information for examples of variations in individual
simulated trajectories for the same and different knot types at a
constant Wi). It is worth noting that the knots observed
experimentally can remain in a partially untied state for long
periods of time. For example, the molecule represented by the
green trace in Figure 4a, which we infer to be the most complex
topologically based on knot size, remains in a partially untied,
coiled state for ∼80τ (τ = 2.1 s). The experimental images in
Figure 4b highlight the significant conformational changes
observed in a DNA molecule as the knot is convected off the
chain and partially unties into a smaller knot and qualitatively
resemble the simulation snapshots shown in Figure 1b.
Next, we consider individual experimental unknotting

trajectories at different Wi (Figure 5). At Wi = 2, the molecule
experiences fluctuations in extension as the knot convects off the
chain and partially unties, although not as drastic as the changes
observed at a lower Wi. At Wi = 1, the continually increasing
knot size and resulting Wieff leads to the chain undergoing a
stretch-coil transition as the knot moves off the chain, followed
by a coil−stretch transition after the knot partially unties. The
knot also appears to diffuse about the chain after partially
untying at Wi = 1, during which the molecule is in a coiled state,
whereas the knot motion looks to be more directed at a higher
Wi, with the knot remaining close to the chain end during the
untying process. We observe qualitatively similar features
between the individual experimental and simulated (Figure 3)
unknotting trajectories.
On the basis of the individual molecule trajectories, we can

define two quantitative metrics: untying time and untying-
induced change in extension. The untying time, tũntie, is defined
as the time taken for a knot to completely untie and is measured
as the time between when the calculated Alexander polynomial
first changes (when the knot first reaches the chain end) and
when the Alexander polynomial is equal to 1 for the unknot
(Figure 3a). By definition, the simplest knot types 31 and 41,
which are typically studied in other unknotting studies, have an
untying time of zero as these knots untie in one step. The
untying-induced change in extension, Δrmax, is evaluated as the
difference in extension when the Alexander polynomial first
changes and the steady-state extension after fully untying
(Figure 3a). Due to the difficulty in determining when the knot
first reaches the chain end in experiments, we use the point of
minimum chain extension in place of when the knot first reaches

Figure 6. (a) Plot ofΔrmax as a function of Wi for different knot types. Each point is averaged over 50 simulation runs or 5−10 experimental runs. (b)
Normalized extension-Wi curves at t ̃= 0 for different knot types. The black line is drawn to guide the eyes. (c) Plot ofΔrmax as a function of initial knot
size (fractional) for different knot types,Wi≥ 1.5. The dotted line represents the quadratic curve of best fit to the simulation results, given by y = 1.36x2

+ 0.49x + 0.04. See the Supporting Information for plots with error bars.
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the chain end in obtaining tuntie and Δrmax from experimental
data. If the knot partially unties into a smaller knot, tuntie is the
time between the point of minimum chain extension and when
the smaller knot is distinguishable from the chain ends; if the
knot appears to untie completely, tuntie is the time between the
point of minimum chain extension and when the intensity of
both chain ends are comparable.
3.3. Untying-Induced Change in Chain Extension.

Figure 6a plotsΔrmax as a function of Wi for a range of simulated
knot types and experimental data (see the Supporting
Information for Figure 6 with error bars). In general, the more
complex the knot type and the lower the Wi, the larger the
change in chain extension induced by knot untying, in
agreement with both the averaged and individual trajectories
presented in Figures 2−5. For the most complex knots studied,
we observe a nonmonotonic trend in Δrmax. This is a
consequence of there being a lower limit to the extension a
molecule can attain when the knot reaches the chain end
(knotted chain radius of gyration), which the chains with larger
knots are likely to have reached within the range of Wi studied.
Although the experimentally generated knot topologies are not
known, we can average data for the sameWi and observe that the
trend for the experimental data points is consistent with that
from the simulations. We note that the values ofΔrmax measured
experimentally are much larger than those determined from
simulations, which suggests that the knots generated by an
electrodydrodynamic instability in our experimental setup are
much more complex and contain more contour than the 101
knot (knot contour ≈1 μm at Wi = 3), in agreement with
findings from our previous work.32

To understand the physics behind these observations, we look
at what determinesΔrmax, determined as the difference between
the steady-state unknot extension and extension when the knot
first reaches the chain end:

Δ = − = −r r r r r L(Wi) (Wi ) (Wi) (Wi, )max untie eff,untie untie knot
untie

(9)

where r(Wi) is the steady-state extension after the knot fully
unties, and runtie, Wieff,untie, and Lknot

untie are the chain extension,
Wieff, and knot size, respectively, when the knot first reaches the
chain end. Above a certain Wi, the steady-state chain extension
does not vary much as a function ofWi. If we assume r(Wi) to be

approximately constant, thenΔrmax is driven by runtie, which is in
turn dependent on Wieff,untie, or Wi and Lknot

untie.
In Figure 6b, we plot runtie normalized by Lmax as a function of

Wieff,untie, where Lmax is the maximum extension that the knotted
molecule can achieve. Previous publications from our group
show that rescaling extension by Lmax andWi byWieff leads to the
collapse of extension-Wi curves for knotted molecules onto that
for unknotted molecules.34,48 As shown in Figure 6b, the
normalized extension-Wi curves for the knotted molecules are
shifted relative to that for the unknot, from which we can infer
that runtie is not determined by steady-state dynamics. This is to
be expected, given that knot untying is a dynamic process. We
can empirically fit a power law to the normalized extension-Wi
curves for the knottedmolecules and determine the best fit curve
to be runtie ∼ Wieff

0.45.
Therefore, assuming Wi to be large enough to approximate

r(Wi) as constant, say Wi ≥ 1.5, we have

Δ ∼ ∼ ∼ ≈
ν+i

k
jjjjj

y
{
zzzzzr r

L
L

L
L

Wimax untie eff
0.45 knot

untie

chain

0.45(1 2 )
knot
untie

chain

(10)

Given that Lknot
untie/Lchain is subject to end effects and difficult to

measure experimentally, we choose to investigate Δrmax as a
function of the initial knot size Lknot,0/Lchain, which is a more
well-defined metric. We find empirically that simulations predict
a quadratic relationship between Lknot,0/Lchain and Lknot

untie/Lchain.
Thus, we expect a quadratic relationship between Δrmax and
Lknot,0/Lchain. We plot Δrmax as a function of Lknot,0/Lchain for all
knot types at Wi ≥ 1.5 in Figure 6c and indeed observe the
collapse of simulation results onto a master quadratic curve. We
highlight that the existence of a universal curve shows that the
untying-induced change in extension is determined solely by the
initial knot size and is not a function of Wi or knot type. The
quadratic relationship between Δrmax and Lknot,0/Lchain explains
why we generally observe two chains with slightly different initial
knot sizes undergo noticeably different conformational changes
as the knot unties, such as the 81 knot at Wi = 1.5 and Wi = 1.75
depicted in Figure 2 (panels d and e, respectively). See the
Supporting Information for more details on Δrmax scaling,
determination of Lmax, empirical fits to simulation results, and
testing of significance of the quadratic regression model.

Figure 7. (a) Untying time scaled by chain relaxation time as a function of Wi for simulated chains with different knot types and experimental data.
Each point is averaged over 50 simulation runs or 5−10 experimental runs. Untying time tũntie as a function ofWi for chains with a (b) 51, (c) 81, and (d)
101 knot. The dashed lines are the untying times for chains with the same knot type held under constant tension F̃ = Fl/kbT = 1 (top) and in an
elongational field without Brownian motion (bottom). Error bars represent 95% confidence interval (see the Supporting Information for calculation).
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3.4. Knot Untying Time. Figure 7a shows the untying time
as a function of Wi for a range of simulated knot types and
experimental data. Generally, the more complex the knot type
and the lower the Wi, the longer it takes for the knot to untie.
The experimental trend for untying time agrees with that from
the simulations, which supports that the model used in our
simulations is sufficient for capturing the physics of the untying
process despite being simplistic. The experimentally measured
untying times relative to chain relaxation time are an order of
magnitude larger than those determined from simulations at a
given Wi, again suggesting that the knots we generate
experimentally have much more complex topologies than the
101 knot. As seen from Figure 7a, the untying times for all knot
types appear to plateau at small Wi.
To further investigate the knot untying times, we plot in

Figure 7 (panels b−d) the untying times for a 51, 81, and 101 knot
as a function of Wi. For reference, we also plot the upper and
lower bounds for untying times of each knot, where the upper
bound is the untying time for the knotted chain held under
constant tension and the lower bound is the untying time for the
knotted chain in an elongational field with no Brownian motion.
We note that the untying time of a knot in an elongational field
generally will not approach that of a knot held under constant
tension as Wi tends to zero because the knot size and chain
extension do not change appreciably as the knot diffuses off a
uniformly tensioned chain. For a knot on a chain held at
constant tension to fully untie, the knot has to diffuse the
entirety of the distance between the knot boundary and chain
end, while a knot in an elongational field at lowWi is aided in the
process by a swelling knot and continuously decreasing chain
extension. Nevertheless, the untying time of a knot held under
constant tension is a useful upper bound for reference. That the
untying time of a 51 knot approaches the upper bound at lowWi
is likely due to the small knot size involved, which gives rise to a
less dramatic change in extension during the untying process.
From Figure 7 (panels b−d), we observe that the knot untying

times reach a diffusive limit at low Wi and a convective limit at
high Wi, with the untying times for all knots approaching the
lower convective bound at high Wi. Furthermore, the more
complex the knot, the higher the Wi at which the diffusive and
convective limits are reached. Specifically, the untying time for
the 51 knot approaches the convective limit for Wi ≥ 1.5,
whereas the untying time for the 101 knot does so only for
Wi ≥ 3. Similarly, the untying time for the 101 knot evidently
approaches a diffusive limit forWi≤ 1.25, while the untying time
for the 51 knot does so at Wi≤ 0.6. At a givenWi, more complex
or larger knots result in a lower Wieff, thus the chain is in a less
elongated state. The closer the molecule is to a coiled
conformation, the more likely for the knot to move along the
chain in a diffusive manner (Figures 3a and 5a). Conversely,
smaller knots lead to a higher Wieff and a more stretched
conformation. Although the knot untying process is initiated by
a knot being convected off the chain, because of the change in
knot size and consequent change in chain extension as the knot
unties, the untying process can be diffusion- or convection-
driven. See the Supporting Information for distributions of
untying times and plot of coefficient of variation for untying
times as a function of Wi.

4. DISCUSSION
Given that knots are capable of affecting polymer proper-
ties,31,34,48,59 there has been growing interest in studying not
only the knotting dynamics of polymers but also the unknotting

dynamics of chains with free ends. Practically, because knots can
reduce the accuracy of next-generation genomics technologies,
such as nanochannel genome mapping that relies on uniform
stretching of molecules to convert physical distances between
markers to genomic distances,43−45 the process of untying knots
is relevant for the development of devices that precondition
DNA for such applications.
This work delves into the process of untying knots in

elongational fields. The varying tension along a polymer chain in
an elongational field leads to a dynamic change in knot size as the
knot is convected off the chain by the field. Specifically, because
tension at the ends of the chain tends to zero, the knot swells as it
moves off the chain. This, in turn, gives rise to a change in Wieff,
consequently causing untying-induced changes in chain
conformation, the extent of which depends on knot complexity
and field strength. For large knots and lowWi, the resulting knot
size might be sufficient to bring the molecule through the coil−
stretch transition as the knot unties, which brings about large
changes in chain conformation during the untying process. We
note that our simulation results are independent of the DNA
model used and can be generalized to long polymer chains in
elongational fields.
It is important to note that flow kinematics strongly influence

the knot untying process. As an example, consider knots on
polymers confined in nanochannels, which behave similarly to
knots along tensioned chains. Due to uniform tension along the
chain, the knot size remains relatively constant as the knot
moves off the chain and the chain does not undergo appreciable
changes in extension as the knot unties.25,60 The dramatic chain
conformational changes observed for the knot untying process
in elongational fields is a consequence of the varying tension
along a chain coupled with the existence of a coil−stretch
transition.
Elongational and shear flows are the simplest flow types and

hence most commonly studied. A computational study on the
dynamics of flexible fibers in steady shear flow found that the
flow is capable of knotting and unknotting a 31 knot.

61 Although
the untying of complex knots in shear flows has not yet been
investigated, we can hypothesize what would be observed. The
complete untying of a complex knot typically occurs over
multiple untying events, with each event requiring a chain end to
be pulled through the knot. As shown in the current and
previous studies,33,37 the extensional character of elongational
fields serves to convect knots off chains. In simple shear flow, for
which the extensional and rotational components have equal
magnitudes, the rotational component of the flow causes
molecules to undergo end-over-end tumbling motion and thus
large fluctuations in chain extension.62,63 We expect the
stochastic tumbling motion of a knotted polymer in shear flow
to prevent the knot from reaching a chain end and frustrate the
complete untying of a complex knot. Furthermore, since the rate
of extension fluctuations increases with shear rate,62 we
postulate that knots will be longer-lived in flows with higher
shear rates, in contrast to the decrease in untying time with
increasing strain rate observed in elongational fields. Due to the
large fluctuations in chain extension and lack of a sharp coil−
stretch transition,62 we believe that the untying-induced change
in extension seen in elongational fields will not be apparent in
shear flows.
It is worth noting that unknotting-knotting transitions in

linear polymers, meaning spontaneous tying of a knot following
an untying event, have been reported at equilibrium,24 in
nanochannels,25,26 and in steady shear flow.61 Such transitions in
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equilibirum and in nanochannels reflect the equilibrium
incidence of knots for given geometric constraints.24−26 The
existence of such transitions in simple shear flow, on the other
hand, indicates that shear flow is capable of tying knots on
molecules.61 Given that elongational fields serve to convect
knots off chains,33,37 it is unsurprising that we do not observe the
spontaneous formation of knots on molecules in elongational
fields. Even if unknotting-knotting transitions do exist in
elongational fields, we believe the effects to be fleeting and
have an insignificant impact on overall untying dynamics. Since
spontanoeus knot formation is absent in elongational fields, it is
convenient to use such conditions for the study of knot untying
processes.

5. CONCLUSION
In this work, we have used Brownian dynamics simulations and
single-molecule DNA experiments to systematically study the
untying process of knotted chains in elongational fields. Both
simulation and experimental results show that the change in
knot size during the knot untying process leads to a change in
Wieff, which in turn causes a change in chain extension. The
larger the knot and the lower the Wi, the more dramatic the
transient changes in chain conformation. In some cases, the knot
is large enough to induce a stretch-coil transition as the knot
convects off the chain, followed by a coil−stretch transition as
the knot partially unties. We investigated twometrics defined for
the untying process: change in chain extension induced by knot
untying and untying time. On the basis of a scaling analysis and
empirical results, we showed that simulations predict a quadratic
relationship between the change in extension due to knot
untying and initial knot size for Wi ≥ 1.5. Even though the knot
untying process is initiated by convection of a knot off the chain,
because of the change in knot size as the knot moves along the
chain that leads to a change in chain extension as a knot unties,
the untying process can be dominated by diffusion (low Wi or
large knot) or convection (high Wi or small knot).
Given the ubiquity of knots in long polymers of both natural

and synthetic origin, it is important to understand how the
rheological properties of polymers is impacted not only by the
presence of knots but also by the removal of knots. This study
has shown that knotted molecules in elongational fields can
undergo large, transient conformational changes as a knot moves
off the chain and unties. Looking forward, we hope that our work
will motivate further mechanistic studies into the unknotting of
polymer chains, such as the untying of knots in other flows or
fields and the untying pathways of knots.
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(22) MoIĹ̀bius, W.; Frey, E.; Gerland, U. Spontaneous Unknotting of
a Polymer Confined in a Nanochannel.Nano Lett. 2008, 8 (12), 4518−
4522.
(23) Raymer, D. M.; Smith, D. E. Spontaneous knotting of an agitated
string. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (42), 16432−16437.
(24) Tubiana, L.; Rosa, A.; Fragiacomo, F.; Micheletti, C.
Spontaneous Knotting and Unknotting of Flexible Linear Polymers:
Equilibrium and Kinetic Aspects.Macromolecules 2013, 46 (9), 3669−
3678.
(25) Micheletti, C.; Orlandini, E. Knotting and Unknotting Dynamics
of DNA Strands in Nanochannels. ACS Macro Lett. 2014, 3, 876.
(26) Suma, A.; Orlandini, E.; Micheletti, C. Knotting dynamics of
DNA chains of different length confined in nanochannels. J. Phys.:
Condens. Matter 2015, 27 (35), 354102.
(27) Bao, X. R.; Lee, H. J.; Quake, S. R. Behavior of Complex Knots in
Single DNA Molecules. Phys. Rev. Lett. 2003, 91 (26), 265506.
(28) Amin, S.; Khorshid, A.; Zeng, L.; Zimny, P.; Reisner, W. A
nanofluidic knot factory based on compression of single DNA in
nanochannels. Nat. Commun. 2018, 9 (1), 1506.
(29) Tang, J.; Du, N.; Doyle, P. S. Compression and self-entanglement
of single DNA molecules under uniform electric field. Proc. Natl. Acad.
Sci. U. S. A. 2011, 108 (39), 16153−16158.
(30) Zhou, C.; Reisner, W. W.; Staunton, R. J.; Ashan, A.; Austin, R.
H.; Riehn, R. Collapse of DNA in AC Electric Fields. Phys. Rev. Lett.
2011, 106 (24), 248103.
(31) Renner, C. B.; Doyle, P. S. Stretching self-entangled DNA
molecules in elongational fields. Soft Matter 2015, 11 (16), 3105−3114.
(32) Klotz, A. R.; Narsimhan, V.; Soh, B. W.; Doyle, P. S. Dynamics of
DNA Knots during Chain Relaxation. Macromolecules 2017, 50 (10),
4074−4082.
(33) Klotz, A. R.; Soh, B. W.; Doyle, P. S. Motion of Knots in DNA
Stretched by Elongational Fields. Phys. Rev. Lett. 2018, 120, 188003.
(34) Soh, B. W.; Narsimhan, V.; Klotz, A. R.; Doyle, P. S. Knots
modify the coil-stretch transition in linear DNA polymers. Soft Matter
2018, 14, 1689−1698.
(35) Vologodskii, A. Brownian dynamics simulation of knot diffusion
along a stretched DNA molecule. Biophys. J. 2006, 90 (5), 1594−1597.
(36)Huang, L.; Makarov, D. E. LangevinDynamics Simulations of the
Diffusion of Molecular Knots in Tensioned Polymer Chains. J. Phys.
Chem. A 2007, 111 (41), 10338−10344.
(37) Renner, C. B.; Doyle, P. S. Untying Knotted DNA with
Elongational Flows. ACS Macro Lett. 2014, 3, 963−967.
(38) Saitta, A. M.; Soper, P. D.; Wasserman, E.; Klein, M. L. Influence
of a knot on the strength of a polymer strand.Nature 1999, 399, 46−48.
(39) de Gennes, P. G. Reptation of a Polymer Chain in the Presence of
Fixed Obstacles. J. Chem. Phys. 1971, 55 (2), 572−579.
(40) Klein, J. Evidence for reptation in an entangled polymer melt.
Nature 1978, 271 (5641), 143−145.
(41) Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer
melts: A molecular dynamics simulation. J. Chem. Phys. 1990, 92 (8),
5057−5086.
(42) Qin, J.; Milner, S. T. Counting polymer knots to find the
entanglement length. Soft Matter 2011, 7, 10676−10693.
(43) Lam, E. T.; Hastie, A.; Lin, C.; Ehrlich, D.; Das, S. K.; Austin, M.
D.; Deshpande, P.; Cao, H.; Nagarajan, N.; Xiao, M.; Kwok, P.-Y.
Genome mapping on nanochannel arrays for structural variation
analysis and sequence assembly. Nat. Biotechnol. 2012, 30 (8), 771−
776.

(44) Reisner, W.; Pedersen, J. N.; Austin, R. H. DNA confinement in
nanochannels: physics and biological applications. Rep. Prog. Phys.
2012, 75 (10), 106601.
(45) Dorfman, K. D.; King, S. B.; Olson, D.W.; Thomas, J. D. P.; Tree,
D. R. Beyond gel electrophoresis: microfluidic separations, fluorescence
burst analysis, and DNA stretching. Chem. Rev. 2013, 113 (4), 2584−
667.
(46) de Gennes, P. G. Coil-stretch transition of dilute flexible
polymers under ultrahigh velocity gradients. J. Chem. Phys. 1974, 60
(12), 5030−5042.
(47) Perkins, T. T.; Smith, D. E.; Chu, S. Single Polymer Dynamics in
an Elongational Flow. Science 1997, 276 (5321), 2016−2021.
(48) Narsimhan, V.; Klotz, A. R.; Doyle, P. S. Steady-State and
Transient Behavior of Knotted Chains in Extensional Fields. ACS
Macro Lett. 2017, 6 (11), 1285−1289.
(49) Allison, S. A. Brownian dynamics simulation of wormlike chains.
Fluorescence depolarization and depolarized light scattering. Macro-
molecules 1986, 19 (1), 118−124.
(50) Jian, H.; Vologodskii, A. V.; Schlick, T. A Combined Wormlike-
Chain and Bead Model for Dynamic Simulations of Long Linear DNA.
J. Comput. Phys. 1997, 136 (1), 168−179.
(51) Klenin, K.; Merlitz, H.; Langowski, J. A Brownian Dynamics
Program for the Simulation of Linear and Circular DNA and Other
Wormlike Chain Polyelectrolytes. Biophys. J. 1998, 74 (2), 780−788.
(52) Stigter, D. Interactions of highly charged colloidal cylinders with
applications to double-stranded DNA. Biopolymers 1977, 16 (7),
1435−1448.
(53) Huang, J.; Schlick, T.; Vologodskii, A. Dynamics of site
juxtaposition in supercoiled DNA. Proc. Natl. Acad. Sci. U. S. A. 2001,
98 (3), 968−73.
(54) Liu, T. W. Flexible polymer chain dynamics and rheological
properties in steady flows. J. Chem. Phys. 1989, 90 (10), 5826−5842.
(55) Somasi, M.; Khomami, B.; Woo, N. J.; Hur, J. S.; Shaqfeh, E. S. G.
Brownian dynamics simulations of bead-rod and bead-spring chains:
numerical algorithms and coarse-graining issues. J. Non-Newtonian
Fluid Mech. 2002, 108 (1−3), 227−255.
(56) Vologodskii, A. V.; Lukashin, A. V.; Frank-Kamenetskii, M. D.;
Anshelevich, V. V. The knot problem in statistical mechanics of
polymer chains. Journal of Experimental and Theoretical Physics 1974,
66, 2153−2163.
(57) Narsimhan, V.; Renner, C. B.; Doyle, P. S. Jamming of Knots
along a Tensioned Chain. ACS Macro Lett. 2016, 5 (1), 123−127.
(58) Clisby, N. Accurate Estimate of the Critical Exponent ν for Self-
AvoidingWalks via a Fast Implementation of the Pivot Algorithm. Phys.
Rev. Lett. 2010, 104 (5), 055702.
(59) Caraglio, M.;Micheletti, C.; Orlandini, E. Stretching Response of
Knotted and Unknotted Polymer Chains. Phys. Rev. Lett. 2015, 115
(18), 188301.
(60) Metzler, R.; Reisner, W.; Riehn, R.; Austin, R.; Tegenfeldt, J. O.;
Sokolov, I. M. Diffusionmechanisms of localised knots along a polymer.
Europhys. Lett. 2006, 76 (4), 696−702.
(61) Kuei, S.; Słowicka, A. M.; Ekiel-Jezėwska, M. L.; Wajnryb, E.;
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