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Stability phase diagram of active Brownian particles
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Phase separation in a low-density gas-like phase and a high-density liquid-like one is a common trait of
biological and synthetic self-propelling particle systems. The competition between motility and stochastic forces
is assumed to fix the boundary between the homogeneous and the phase-separated phase. Here we demonstrate
that, on the contrary, motility does also promote the homogeneous phase allowing particles to resolve their
collisions. This understanding allows quantitatively predicting the spinodal line of hard self-propelling Brownian
particles, the prototypical model exhibiting a motility-induced phase separation. Furthermore, we demonstrate
that frictional forces control the physical process by which motility promotes the homogeneous phase. Hence,
friction emerges as an experimentally variable parameter to control the motility-induced phase diagram.
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I. INTRODUCTION

Many biological and synthetic systems of self-propelled
particles exhibit a transition from a homogeneous state to
one in which a gas- and a liquid-like phase coexist [1–3].
While diverse physical processes might be responsible for the
observed transition, the bare presence of motility is enough
to induce it [4]. Indeed, motility-induced phase separation
(MIPS) occur in systems of particles whose interactions are
purely repulsive and do not promote the alignments of the
self-propelling directions. The prototypical simulation model
is the active Brownian particle (ABP) model, which consists
of spherical self-propelled particles interacting via excluded
volume forces, and subject to thermal noise [1,5–9].

In active systems, two particles colliding head-to-head, or
nearly so, severely slow down their motion, reducing the local
pressure. This pressure drop may seed a positive-feedback
mechanism leading to the formation of a dense cluster of ac-
tive particles, and hence to phase separation [10,11]. A similar
scenario occurs in granular systems, where the pressure drop
is due to the dissipative nature of the interparticle collisions
[12,13]. A homogeneous system of active particles is not
always unstable toward phase separation, as there are physical
processes that promote the homogeneous phase, opposing
the above instability mechanism. The balance between the
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mechanisms promoting phase separation and those promoting
the homogeneous phase sets the limit of stability of the
homogeneous phase in the motility-density plane.

The rotational diffusion plays a role because, before a
collision seeds the growth of a cluster, the two colliding
particles may change their self-propelling direction and swim
away [4,7,14–16]. This process gives rise to a flux of parti-
cles from the dense to the less dense phase promoting the
homogeneous phase. By balancing this flux and the reverse
flux of particles migrating toward the denser phase, which
is controlled by the activity, Redner et al. [7,16] predicted a
low-density coexistence line of ABPs in good agreement with
numerical results but did not predict the location of the critical
point and the upper coexistence line. The other possibility is
that the translational rather than the rotational noise promotes
the homogeneous phase. This scenario is suggested by a
continuum equation for the evolution of the coarse-grained
density and polarization fields [1,8,17–19], which is formally
related to a thermodynamic approach aiming to map active
Brownian particles into an equilibrium system [11]. This sce-
nario predicts a U-shaped spinodal line in the activity-density
plane resulting from a diffusive instability. The prediction
correctly reproduces the divergence of the lower spinodal
line at a finite density, as well as the existence of a critical
point. However, this approach underestimates [4] the mini-
mum value of the activity at the critical point by a factor
�10. The limitations [4] of theoretical approaches based on
the rotational rather than on the translational diffusivity in
predicting the phase diagram of ABPs suggests that additional
processes promoting phase separation may exist.

In this paper, we demonstrate a physical process promot-
ing the homogeneous phase driven by the motility of the
particles. Motility, therefore, promotes and opposes phase
separation at the same time. We formalize this and the other
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mechanisms promoting and opposing phase separation in a
collisional framework and predict the spinodal line of ABPs.
Our prediction favorably compares to both two- and three-
dimensional numerical simulations, for different values of the
control parameters. Furthermore, we demonstrate that friction
tunes the features of the motility-induced phase diagram, as it
controls the instability mechanisms we have uncovered.

II. KINETIC MODEL

We develop a kinetic model to predict the spinodal line of
ABP particles. In this model, the dynamics is described by the
following overdamped equation of motion:

vi = F i

γ
+ Fa

γ
ni +

√
2Dtη

t
i , (1)

ṅi =
√

2sDrη
r
i × ni. (2)

Here sDr and Dt = Drσ
2/3 are the rotational and the transla-

tional diffusion coefficients, γr = γ σ 2

3 , η is a Gaussian white
noise variable with 〈η〉 = 0 and 〈η(t )η(t ′)〉 = δ(t − t ′), Fa

is the magnitude of the active force acting on the particle,
and F i = ∑

f i j are the forces arising from the interparticle
interactions. In the absence of interaction and noise, particles
move with velocity va = Fa/γ , and do not rotate. The control
parameters are the volume fraction φ and the Peclet number
Pe ≡ va

Drσ
= vaσ

3Dt
, with σ the average particle diameter. For

Brownian spheres, s = 1 in Eq. (2). We develop our theoret-
ical model for arbitrary values of s, to allow for a stringent
numerical test of our theoretical predictions.

We theoretically determine the spinodal as the limit of
stability of a homogeneous system toward the growth of
density fluctuations. Within the spinodal region, the system
is unstable as the diffusivity is D < 0, so that the flux of
particles induced by a concentration gradient, J = −D∇ρ,
enhances the gradient in a positive feedback mechanism. The
limit of stability of the homogeneous phase is thus D = 0,
or equivalently J = jg − js = 0, where jg = ρτ−1

g and js =
ρτ−1

s are the particle fluxes promoting and suppressing den-
sity fluctuations, respectively.

The flux of particles promoting the growth of density
fluctuations results from the interparticle collisions inducing a
sensible drop in the local pressure. In a homogeneous system,
only long-lasting interparticle collisions resulting from head-
to-head collisions induce such a drop, as we demonstrate
in the Appendix B. Most of the collisions, therefore, do
not promote density fluctuations but rather slow down the
particles, endowing them with an effective velocity, ve. Colli-
sions promoting phase separation have, therefore, a frequency
τ−1

g ∝ φve. Previous results have demonstrated that in the
homogeneous phase, the effective particle velocity is ve =
va(1 − φ

φ∗ ). This density dependence has been related to the
pair-correlation function anisotropy [17], and rationalized in
terms of the collision rate [19]. The estimation of the effective
velocity allows that of the typical inverse agglomeration time,

τ−1
g = aφ

ve

σ
= aφ

va

σ

(
1 − φ

φ∗

)
, (3)

where a is a constant of order 1, and hence allows the
estimation of jg. In the limit of stiff particles φ∗ correspond
to the close packing volume fraction.

The inverse agglomeration time vanishes for φ → 0, due
to the absence of nearby particles, as well as for φ → φ∗.
In this limit particles are stuck, and particles self-propelling
in opposite directions are not able to meet and promote a
density fluctuation. We remark that our estimation concerns
the agglomeration time in a homogeneous system at volume
fraction φ. This time differs from that needed, in a phase-
separated state, by a gas particle to join a cluster [4,7,14–16].
In particular, in the gas phase far from the critical point the
volume fraction dependence of ve is negligible.

The flux of particles promoting phase separation is con-
trasted by fluxes promoting the homogeneous phase. One of
these fluxes is driven by the rotational diffusivity of the par-
ticles, as two colliding particles might resolve their collision
rotating their self-propelling direction. This physical process
is the same allowing, in a phase-separated state, particles on
the rim of an active cluster to escape from it [4,7,14,15]. The
inverse timescale of this rotational detaching mechanism is

τ−1
rd = bsDr, (4)

with b a constant of order 1. In principle, particles may also
resolve their collision by diffusing away, giving rise to a
flux promoting phase separation driven by the translational
diffusivity. However, the phase diagram of ABPs appears
[1,18] insensitive to Dt , for reasons we rationalize later on.
We therefore do not consider any stabilizing flux associated
with Dt .

The balance of τg and τrd allows us to predict a spinodal
line, Pe ∝ φ−1(1 − φ/φ∗)−1. This prediction captures the
numerically observed U shape of the spinodal line, and the
divergence of Pe in the φ → φ∗ limit. However, according to
this prediction, the spinodal line also diverges in the φ → 0
limit; hence, regardless of the volume fraction, a homoge-
neous system should become unstable and phase separate as
Pe increase. Conversely, previous results indicate that only
a system with volume fraction larger than a threshold φm

becomes unstable. There is, therefore, an additional stability
mechanism in ABPs, which should be relevant at high Pe and
small φ.

We identify this mechanism considering that two particles
may resolve their collision without any change in the orienta-
tion of their self-propelling direction, but rather by sliding off
each other [16,20], effectively rotating around their center of
mass. This mechanism is illustrated in the top row of Fig. 1.
This physical process is promoted by the activity, which sets
the scale of the particle velocity. In a crowded environment,
this process is hindered by the density, which slows down
particle motion. We therefore assume particles to slide off
each other with a velocity proportional to the effective active
velocity. Thus, the inverse timescale associated with this
sliding-detaching mechanism is

τ−1
sd = c

va

σ

(
1 − φ

φ∗

)
, (5)

where c is a constant of order 1.

023010-2



STABILITY PHASE DIAGRAM OF ACTIVE BROWNIAN … PHYSICAL REVIEW RESEARCH 2, 023010 (2020)

FIG. 1. Top row: Sliding-detaching mechanism of standard fric-
tionless ABPs, as illustrated via the simulation of a collision at
high Peclet number. Bottom row: The same collision is simulated
in frictional ABPs. Friction suppresses the sliding-detaching mech-
anism by inducing the rotation of the self-propelling directions of
the colliding particles. Simulations are in the high-Pe limit where
stochastic forces are negligible on the considered timescale.

By balancing jg = ρτ−1
g and js = ρτ−1

s = ρ(τ−1
rd + τ−1

sd ),
we determine the spinodal line,

Pe = As

(φ∗ − φ)(φ − φm)
, s 
= 0, (6)

φ = φm, s = 0, (7)

with φm = c
a and A = bφ∗

a . Given that a, b, and c are of order 1,
so are the φm and A, in both 2D and 3D. The critical point is at
φc = 1

2 (φ∗ + φm), Pec = 4A
(φ∗−φm )2 . The prediction of a vertical

spinodal line in the absence of rotational motion, s = 0, agrees
with previous investigations [1,18].

III. FIXING φ∗ AND φm

Our theoretical prediction of Eq. (6) has three free parame-
ters. We have, however, independently estimated both φ∗, the
jamming volume fraction, as well as φm, the spinodal line in
the absence of rotational noise, for the numerical model we
consider in the following. We find φ∗ � 0.879 (0.645) in 2D
(3D), and φm � 0.25 (0.345) in 2D (3D), as we detail below.
Hence, we are left with a theoretical prediction with a single
free parameter, the scaling amplitude A.

A. Jamming volume fraction, φ∗

The jamming volume fraction φ∗ is a protocol-dependent
quantity, which activity pushes toward its maximum value.
To determine φ∗, we cyclically compress and decompress the
system across the expected jamming transition, in the absence
of motility and noise. The volume fraction varies in steps of
10−3, and the energy of the system is minimized after every
change of volume fraction, via the conjugate gradient pro-
tocol. Figure 2 illustrates subsequent compression curves, in
both two and three dimensions. The pressure converges after
a few cycles to an asymptotic curve, which grows linearly for
φ > φ∗. From these results, we estimate φ � φ∗ � 0.879 in
two spatial dimensions, and φ∗ � 0.648 in three dimensions.

B. Phase separation in the absence of rotational noise

In the absence of rotational noise, s = 0, our theoretical
model predicts the spinodal line to be Peclet independent, φ =
φm. Previous numerical results have investigated this limit,

(a) (b)

FIG. 2. Dependence of the pressure on the volume fraction dur-
ing compression-decompression cycles. For clarity, we only illustrate
the compression cycles. Two- and three-dimensional results are
illustrated in panels (a) and (b), respectively.

confirming this theoretical prediction [1,18]. The investigation
of the stability phase diagram for s = 0 thus allows estimating
φm.

We report our numerical results in Fig. 3, for both two-
and three-dimensional systems. We recovered the Peclet inde-
pendence of the spinodal line. Deviations from the theoretical
predictions occur at small Peclet number, as in this limit
thermal diffusivity start being relevant.

From this investigation, we estimate φm � 0.25 in two spa-
tial dimensions, and φm � 0.345 in three spatial dimensions.

IV. NUMERICAL VALIDATION IN TWO AND THREE
SPATIAL DIMENSIONS

We investigate the phase diagram of ABPs, whose dy-
namics is governed by Eqs. (1) and (2). We work in the
hard-sphere limit, using the interparticle interaction and the
parameter detailed in Appendix A, and consider systems with
up to N = 32 000 particles in 2D, and up to N = 64 000 in
3D. We determine the coexistence line evaluating the position
of the peaks of the local density distribution, as discussed in
Appendix C 1. Investigating the dynamics of phase separation
[7,19], and specifically the time dependence of both the
fraction of the volume in the low-density phase and the char-
acteristic size of the density fluctuations, we identify the state
points undergoing spinodal decomposition. See Appendix C 2

(a) (b)

FIG. 3. Stability phase diagram in the absence of rotational
noise. The diagrams have been obtained investigating systems with
N = 32 000 in 2D (left panel) and N = 64 000 in 3D (right panel).
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(a) (b)

FIG. 4. Stability phase diagram for ABPs in two (a) and in
three (b) spatial dimensions, for s = 1. Circles identify points that
either do not phase separate or phase separate via nucleation, within
our simulation time. Squares identify points that phase separate via
spinodal decomposition. Triangles identify points for which we were
unable to clearly assess the phase. Stars mark the coexisting volume
fractions, as determined from the positions of the peaks of the local
density probability distribution. The full lines correspond to the
theoretical prediction for the spinodal line of Eq. (6). We adjusted
the value of A to 1.23 (2D) and to 0.65 (3D), and fixed φm and φ∗

as described in the main text. In panel (a), the dashed line is the
theoretical prediction of the continuum approach, Eq. (9).

for details on the phase separation dynamics at different state
points.

Figure 4(a) summarizes our results for standard (s = 1)
ABPs in two dimensions (2D). In the figure, stars identify the
coexistence line, squares points phase separating via spinodal
decomposition, and circles points where either nucleation or
no phase separation occurs. This phase diagram is consistent
with those previously reported in the literature as concerns
the critical value of the Peclet number, the typical values of the
volume fractions, the shape of the coexistence line, and the
location of the spinodal region. Our theoretical prediction of
Eq. (6), represented as a full black line, correctly delimits the
spinodal region. Analogous results for the three-dimensional
(3D) case are in Fig. 4(b).

While these results support our model, they do not clarify
whether our approach or the continuum one better captures the
physics of ABPs. Indeed, a U-shaped spinodal line, which at
low density diverges at a finite density, has also been predicted
within a continuum description. In this approach the coarse-
grained density is found to evolve according to a diffusion
equation with effective diffusivity [1,8,17,18]

D = D − v2
cg(ρ)

2sDr

[
1 + d ln vcg

d ln ρ

]
, (8)

where vcg is the coarse-grained velocity along the polarization
direction, so that D = 0. Assuming [1,8,17,18] the coarse-
grained velocity to behave as the effective single-particle
one, vcg(ρ) = ve(ρ) = va(1 − φ/φ∗), and interpreting D as
density-independent particle diffusivity, this approach pre-
dicts a spinodal line

Pecont
s = −s1/2

[
3

2

(
1 − φ

φ∗

)(
1 − 2φ

φ∗

)]−1/2

; (9)

(a) (b)

FIG. 5. Phase diagram (spinodal lines) of ABPs, in 2D. With
respect to its standard value s = 1, the rotational diffusion coefficient
is changed by a factor s = 1/2 in panel (a), and by a factor s = 10
in panel (b). This does not affect the phase diagram, if the Peclet
number is also rescaled by a factor s.

we illustrate this in Fig. 4(a). This parameter-free prediction
largely underestimates the critical Peclet number, as previ-
ously noticed [4]. However, treating φ∗ [18] (or φm [8,9]) as a
free parameter, and allowing for a scale factor possibly asso-
ciated with the density dependence of the particle diffusivity,
the prediction of the continuum model becomes comparable
to ours, for s = 1.

The two theoretical predictions, however, differ as con-
cerns the dependence of the spinodal line on the rotational
diffusivity, sDr in our formalism. Indeed, the spinodal line
scales linearly with s, according to our theoretical prediction
of Eq. (6), while it scales as s1/2 according to the continuum
model, Eq. (9). This consideration makes compelling the
investigation of the s dependence of the phase diagram that we
have performed in 2D. We compare the s = 1 phase diagram
with those obtained for s = 1/2 and s = 10, in the (Pe/s, φ)
plane, in Fig. 5. In the figure, open symbols correspond to s =
1, full ones to s 
= 1, and the full black line is as in Fig. 4(a).
The phase diagrams in the (Pe/s, φ) plane are almost indistin-
guishable. This finding indicates that the spinodal line scales
linearly with s, and strongly supports our theoretical model.

Furthermore, we notice that the continuum approach pre-
dicts a vertical phase boundary in the absence of translational
noise [18], regardless of the rotational noise. Conversely, a
vertical phase boundary occurs with no rotational noise [1,18],
as predicted by Eq. (7).

V. ROTATIONAL VERSUS TRANSLATIONAL
DIFFUSIVITY

Our model, which neglects the role of translational dif-
fusivity, successfully rationalizes the motility-induced phase
diagram. We rationalize why the translational diffusivity is
irrelevant and the limit of validity of this result, by com-
paring the diffusion coefficient of the passive suspension to
the activity-induced effective diffusion coefficients. For the
diffusivity of the passive suspension, we find (2D) Dp(φ) =
Dt (1 − φ/φd ) with φd � φ∗, in the volume fraction range we
have considered. This result is consistent with the expectation
for the low-density behavior of Brownian particles [21]. We
associate two diffusion coefficients to the active suspension,
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(a) (b)

FIG. 6. Peclet number dependence of rescaled diffusion coeffi-
cients associated with the motion parallel and perpendicular to the
self-propelling direction of each particle.

by describing particle motion in the homogeneous phase as
resulting from a sequence of steps alternatively taken from
distributions corresponding to two different stochastic pro-
cesses, describing the motion in between collisions and during
a collision.

The stochastic process describing motion in between col-
lisions is that of a persistent random walk, with persistence
time 1/sDr . The corresponding diffusivity D‖ is evaluated,
following previous works [1,19], considering the steps to
have length l = vas−1D−1

r (1 − tc
tc+tmf

), where tc and tmf are the
mean duration of a collision and the mean time between col-
lisions. At low density tmf ∝ (vaσ

d−1ρ)−1 � tc and tc/tmf =
φ/φ∗ [19], so that

D‖ − Dp(φ)

d
� σ 2DrPe2

s

(
1 − φ

φ∗

)2

. (10)

In the above equation, we have taken into account the con-
tribution of the thermal diffusivity, which is divided by a
factor d accounting for the fact that D‖ is effectively a
one-dimensional diffusivity. The stochastic process describing
the motion resulting from the steps performed during the
collisions is that of a simple random walk, with step size ∝ σ

and step frequency 1/(tc + tmf ) ∼ 1/tmf ∝ vaφ/σ , so that

D⊥ − Dp(φ)

d
� σ 2PeDrφ. (11)

We numerically validate these theoretical predictions by
decomposing the instantaneous velocity of particle i in the
components parallel and perpendicular to its self-propelling
direction, vi(t ) = v‖

i (t ) + v⊥
i (t ), with v‖

i = (vi · ni)ni. The
time integration of these velocities defines a normal and
a tangential displacement, �ri

‖,⊥(t ) = ∫ t
0 v‖,⊥

i (t )dt , from
which we estimate the diffusion coefficients, D‖,⊥ =
limt→∞〈�r2

‖,⊥(t )〉/2t . Figure 6 shows that these numerical
estimates compare well with the theoretical predictions. The
theoretical predictions work well at Pe � 1. Importantly both
diffusion coefficients, and in particular D⊥ which describes
a physical process promoting the homogeneous phase, grow
with the Peclet number, and are much larger than the diffu-
sivity of the passive suspension. This result explains why the
diffusivity of the passive suspension does not influence the
motility-induced phase diagram.

However, our theoretical prediction fails at small Pe, where
the collisional description of the dynamics is no longer ap-
propriate. Hence, the thermal diffusivity may influence phase
separation if the critical point is at Pe < 1, which may occur
at very small values of s. In this limit, our theoretical pre-
diction breaks down. Indeed, for s = 0 our model predicts a
vertical phase boundary, and hence a motility-induced phase
separation, also in the limit of vanishing motility. With no
motility, however, no MIPS occurs and the system behaves as
a thermal one [22]. Understanding how the U-shaped spinodal
line evolves into a vertical phase boundary as the rotational
diffusivity decreases is an interesting avenue of research we
leave for the future.

VI. FRICTIONAL CONTROL OF THE PHASE DIAGRAM

The sliding-detaching mechanism occurs when two col-
liding particles resolve their collision without their self-
propelling directions rotating. Interparticle interactions which
induce a torque on the particles, therefore, suppress this
mechanism, as illustrated in Fig. 1, bottom row. These inter-
actions may result from the shape of the particles, if these are
elongated [23,24], and from lubrication forces in wet systems
[25]. In dry systems, frictional forces also induce torques and
hence suppress the sliding-detaching mechanism in dry active
matter. Recent results have demonstrated that frictional forces
are also present in colloidal hard-sphere suspensions at high
enough shear rates, where they give rise to the discontinu-
ous shear thickening phenomenology [26–29]. This frictional
dependence is rationalized assuming that the hydrodynamic
layer, which would give rise to diverging normal forces,
breaks down at a characteristic length set by the particle
surface asperities. Hence, frictional forces may play a role
also in experiments of wet colloidal scale active particles, at
high enough Peclet number. The tunability of the frictional
interaction in colloidal systems [28], therefore, may allow
us to control the motility-induced phase separation of these
systems.

We investigate the influence of static friction on the
motility-induced phase separation in three-dimensional nu-
merical simulations, resorting to the frictional Mindlin model,
as described in the methods section. We find Coulomb’s fric-
tion coefficient μ to influence the lower spinodal line, which
is critically affected by the sliding-detaching mechanism, not
the upper spinodal line. At each value of the Peclet number,
a homogeneous system becomes unstable toward phase sep-
aration at a volume fraction φs(Pe, μ) which exponentially
decreases with μ, approaching a limiting value, as in Fig. 7(a).
Consistently, the spinodal region widens on increasing the
friction coefficient and the Peclet number, as in Fig. 7(b).

The combined effect of friction and Peclet number is ratio-
nalized considering that the frictional forces, whose strength
scales as μva ∝ μPe, can be disrupted by thermal ones, which
have a constant magnitude, through an activated process.
This activated dynamics naturally explains the exponential
decay of φs(Pe, μ). The activation probability decreases as
the Peclet number increases, so that the spinodal φs(Pe, μ) ap-
proaches φ = 0, at all finite values of the friction coefficient,
making the frictionless limit a singular one.
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(a) (b)

FIG. 7. At given Pe, a homogeneous system becomes unstable
toward phase separation at a volume fraction φs. Panel (a) shows
that this volume fraction exponentially approaches a limiting value
as the friction coefficient increases, φs(μ) = φs(∞) + 	φse−μ/μc .
For Pe = 103 we find φs(∞) � 0.085, 	φs � 0.26, and μc � 0.32.
Panel (b) illustrates the static friction dependence of the lower
spinodal line.

These results demonstrate that friction modulates the phase
diagram of ABPs, possibly guiding future experiments. Im-
portantly, this modulation occurs as friction suppresses the
sliding-detaching mechanism, indirectly confirming the rele-
vance of this mechanism.

VII. CONCLUSIONS

While not representing any experimental system faithfully,
active Brownian particles emerged as a prototypical model
exhibiting a motility induced phase separation, and are the
standard benchmark for statistical physics of active matter
theories. In ABPs, motility promotes phase separation, as
clarified by the MIPS [4] or, equivalently, by a mechanistic
approach [11]: due to the presence of motility, colliding
particles are much slower than the others, so that collisions
induce a local pressure drop which seeds phase separation.
Previous theoretical approaches argued that stochastic pro-
cesses related to the translational [1,8,17–19] or rotational
[7,14,16] diffusivity conversely promote the homogeneous
phase.

Here we have demonstrated that besides these previously
identified mechanisms, there exists a physical process in-
duced by motility that promotes the homogeneous phase. This
process dominates over the others at high motility. In this
limit, the balance of two motility-driven processes fixes the
spinodal line, which thus becomes motility independent. In
the opposite limit of small motility, the rotational diffusivity
becomes relevant, and the phase diagram becomes motility
dependent. We have formalized these mechanisms in a kinetic
approach and predicted the spinodal line of ABPs up to a
scaling amplitude of order 1. The estimation of this constant
remains an open problem.

We have explicitly checked that in standard ABPs the trans-
lational diffusivity is negligible with respect to diffusivities
induced by the collisions. This explain why the translational
diffusivity does not affect the phase diagram. This scenario,
however, certainly changes in the limit of small rotational
diffusivity, where thermal and activity-induced effects may
compete.

The sliding-detaching mechanism we have uncovered in-
volves the coordinated motion of colliding particles. Coordi-
nated motion is, by definition, suppressed in active Ornstein-
Uhlenbeck [30] and Monte Carlo models [31]. Accordingly,
for these models we expect that the spinodal line does di-
verges in the φ → 0, as observed. Friction also suppresses the
sliding-detaching mechanism, by inducing the rotation of the
self-propelling directions of the particles. Our investigation
of the effect of friction indicates that this could be used to
control the features of the motility-induced phase diagram,
also in light of recent experimental results [28]. The frictional
dependence is qualitatively rationalized considering that fric-
tional forces scale as μPe. The coexistence of this force scale
and of stochastic forces then makes the dynamics of frictional
systems an activated one. The quantitative rationalization of
the effect of friction on the phase diagram remains, however,
an open problem.
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APPENDIX A: NUMERICAL DETAILS

We perform numerical simulations of ABPs in two and
three spatial dimensions. We use an interparticle interaction
model borrowed from the granular community, to model
frictional particles; the frictionless model is recovered setting
to zero Coulomb’s friction coefficient, μ.

The interparticle interaction force has a normal and a tan-
gential component, F i j = f n

i j + f t
i j . The normal interaction

is a purely repulsive Harmonic interaction, f n
i j = kn(σi j −

ri j )
(σi j − ri j )r̂i j , 
(x) is the Heaviside function, σi j =
(1/2)(σi + σ j ), ri j = ri − r j , and ri is the position of particle
i. The tangential force is f t

i j = kt �ξi j , where ξi j is the shear
displacement, defined as the integral of the relative velocity of
the interacting particle at the contact point over the duration of
the contact, and kt = 2

7 kn. In addition, the magnitude of tan-
gential force is bounded according to Coulomb’s condition:
| f t

i j | � μ| f n
i j |. We work in the hard-sphere limit considering

stiff particles, the maximum relative deformation of a particle
being � 10−4 for the range of parameters we have considered.
This makes our results insensible to kn, but our numerical
investigation more computationally costly than previous ones.

For the frictionless case, μ = 0, and the equation of motion
is as in Eqs. (1) and (2). In the presence of friction, a torque
T i
γr

arising from the frictional interparticle interaction is added
to Eq. (2).

Simulations [32] are done integrating the equation of mo-
tion via the overdamped Langevin algorithm, with integration
time step 2 × 10−8D−1

r .

APPENDIX B: AGGLOMERATION TIMESCALE AND
EFFECTIVE PARTICLE VELOCITY

Our kinetic model requires the estimation of the agglomer-
ation timescale τg, which is the average time a particle waits
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(a) (b) (c)

FIG. 8. Panels (a) and (b) illustrate the dependence of the dura-
tion of a collision, tcoll, and of the average of the displacements of
the colliding particles, d , on the impact parameter, b, and the relative
angle between the self-propelling direction, θ . These quantities are
defined in the inset of panel (a), and θ = 0 corresponds to a head-
to-head collision. Panel (c) illustrates the b and θ dependence of the
clustering ability tcoll/d . Quantities are nondimensionalized using the
bare particle velocity v0 and the particle diameter σ .

before experiencing a collision promoting the formation of a
cluster. This timescale depends on the typical particle velocity.
We have assumed this to be an effective density-dependent
velocity, rather than the bare particle velocity v0. Here we
provide data supporting this assumption.

If all collisions promote the formation of a cluster, then the
timescale of interest is the mean free time which, in the ABP
context, depends on the density and the bare particle velocity
v0. In ABPs, however, only the long-lasting collisions are able
to sensibly slow down particle motion, hence reducing the
local pressure and possibly seeding the formation of a cluster.

To evaluate how may collisions could potentially lead to
the formation of a cluster, we have investigated the dynamics
of two-particle collisions, as a function of the impact parame-
ter b and of the relative angle of the self-propelling directions
of the two particles, θ . The inset of Fig. 8(a) defines these
quantities. In these simulations, there is no rotational noise.

FIG. 9. Time evolution of the local volume fraction distribution,
in three dimensions, at φ = 0.5 and Pe = 30, for N = 32 000.

FIG. 10. Peclet number dependence of the probability distri-
bution of the local volume fraction φcg, in two (left) and three
dimensions (right). Full black lines are local fits to the Gaussian
function used to estimate the coexisting densities. In two dimensions,
N = 32 000, while in three dimensions, N = 64 000.

Figure 8 illustrates in panel (a) the b and θ dependence of
the collision duration, tcoll. The line of maximal values cor-
responds to θ (b) = arctan( b√

1−b2 ), but long-lasting collisions
also occur for |θ | � ±90 and |θ | � ±180 (not shown). Panel
(b) illustrates the average displacement of the particles dur-
ing the collision, d = 1

2

∑2
i=1{[xi(tcoll ) − xi(0)]2 + [yi(tcoll ) −

yi(0)]2}1/2.
Collisions able to sensibly slow down particle motion are

those with large tcoll and small d. Hence, we consider the ratio
tcoll/d as a proxy of how likely a collision acts as a cluster
seed. Panel (c) shows that this clustering ability is strongly

(a) (b)

FIG. 11. Evolution of the fraction of the overall volume with
a density smaller than the low-density coexistence density, for an
N = 32 000 particle system, in two dimensions. In panel (a) φ =
0.35, while in panel (b), φ = 0.4. In both panels, Pe = 20. At φ =
0.35 (a) the low-density fraction only increases after a period of
transition. This indicates that phase separation occurs via nucleation.
At φ = 0.4 (b) the fraction grows quickly at early times, indicat-
ing that the phase separation proceeds via spinodal decomposition.
Afterward, the system coarsens. The growth of the length scale of
the density fluctuations is compatible with the expected λ ∼ t1/4

law, as illustrated in the inset. The bottom panels illustrate maps of
the coarse-grained density distribution, which consistently suggests
that phase separation occurs via different processes at the different
volume fractions. Note the different timescales.
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FIG. 12. Time evolution of the coarse-grained density, for systems of N = 32 000 (2D) and N = 64 000 (3D) particles. The three rows
refer to different state points in the (φ, Pe) plane, just above what we have identified as the spinodal line. We consistently observe the spinodal
decomposition of the system.

peaked around collisions with θ (b) = arctan( b√
1−b2 ), and b

small.
Since the clustering ability sharply peaks around some

characteristic values of the impact parameters, only a tiny
fraction of all collisions induce the formation of a cluster.
Because of this, in between two collisions promoting the
formation of a cluster, a particle experiences many other
collisions. These collisions slow down the particle motion
endowing the particles with an effective velocity. We argue
that this effective velocity, rather than the bare one, sets the
agglomeration timescale.

APPENDIX C: DETERMINATION OF
THE SPINODAL REGION

The spinodal line is a mean-field concept, and in finite sys-
tems, the separation between nucleation and spinodal decom-
position is not sharp. Nevertheless, on increasing the system
size, the crossover between the two different phase separation
mechanisms allows for a meaningful operative identification

of the state points where phase separation occurs via spinodal
decomposition.

To identify the state points within the spinodal region, we
have first identified those that phase separate after relatively
short simulations, investigating the distribution of the coarse-
grained density, as described next. Then, for a relevant subset
of those points, we have investigated the dynamics of phase
separation, to distinguish between nucleation and spinodal
decomposition, as described in Appendix C 2.

1. Coarse-grained density

We determine whether a system is homogeneous or phase
separated investigating the probability distribution of the
coarse-grained density, ρcg(r), or equivalently of the coarse-
grained volume fraction, φcg(r) = ρcg(r)〈v〉, with 〈v〉 the
average particle volume. Following Ref. [33], we define ρcg(r)
by convoluting the number density

∑
i δ(r − ri) with f (r) =

Z exp[−1/(1 − r2/w2)], with w = 3.5σ and Z a normaliza-
tion factor. Figure 9 illustrates that in simulations starting
from a homogeneous configuration, ρcg(r) evolves until it
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converges to a steady-state distribution, which in the figure
is bimodal. In the range of parameters we have considered,
convergence occurs within 100D−1

r .
We consider a point in the (φ, Pe) plane to be phase

separated if the probability distribution of the local density
is bimodal, and if doubling the system size yields consistent
results. In two dimensions, we consider systems with N up to
32 000, in three dimensions with N up to 64 000. Figure 10
illustrates example distributions.

We evaluate the coexisting densities by locally approxi-
mating the distribution via Gaussian functions. The results of
these fits are illustrated in the figure. The coexisting volume
fractions are in Fig. 1 of the main text.

Note that while the two panels of Fig. 10 refer to volume
fractions which are close to the critical ones, the height of
the two peaks is sensibly different. This difference occurs as
the coexistence curve is extraordinarily flat and asymmetrical
close to the critical point, in particular in three dimensions.

2. Dynamics of phase separation

We investigate the dynamics of phase separation to ratio-
nalize whether a system undergoes separation via spinodal
nucleation rather than via nucleation. First, we consider the
time dependence of the percentage of the total volume with
local volume fraction smaller than that of the coexisting

low-density phase, α(t ) = V [φcg � φcoex(t )]/Vtot. If phase
separation proceeds via spinodal decomposition, then α(t )
quickly varies at short times, the homogeneous system being
unstable. Conversely, if phase separation occurs via nucle-
ation, then α(t ) only starts varying after a period of transition,
corresponding to the nucleation time.

Figure 11 illustrates the result of this investigation, in
two dimensions. Panels (a) and (b) refer to different state
points that have the same Pe and differ in volume fraction
by 	φ = 0.05. At φ = 0.35, phase separation is seen to
occur via nucleation, while at φ = 0.4, it occurs via spinodal
decomposition. The associated snapshots of the local density
field confirm this interpretation.

Then, we investigate the time evolution of the typical
length scale λ of the density fluctuations. We define λ as
the distance at which the correlation function of the coarse-
grained density first becomes zero. The inset of panel (b)
shows that λ grows as a power law with time at φ = 0.4
and Pe = 20. The growth exponent is compatible with 1/4,
the expected exponent for the coarsening exponent in two-
dimensional systems with conserved order parameter. This
result further supports our interpretation, namely that at φ =
0.4 and Pe = 20 the system phase separates via spinodal
decomposition.

We provide more examples of systems phase separating via
spinodal decomposition, for state points close to our identified
spinodal line, in both two and three dimensions, in Fig. 12.
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