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ABSTRACT Mixed-species biofilms display a number of emergent properties, includ-
ing enhanced antimicrobial tolerance and communal metabolism. These properties
may depend on interspecies relationships and the structure of the biofilm. However,
the contribution of specific matrix components to emergent properties of mixed-
species biofilms remains poorly understood. Using a dual-species biofilm community
formed by the opportunistic pathogens Pseudomonas aeruginosa and Staphylococcus
aureus, we found that whilst neither Pel nor Psl polysaccharides, produced by P.
aeruginosa, affect relative species abundance in mature P. aeruginosa and S. aureus
biofilms, Psl production is associated with increased P. aeruginosa abundance and
reduced S. aureus aggregation in the early stages of biofilm formation. Our data sug-
gest that the competitive effect of Psl is not associated with its structural role in
cross-linking the matrix and adhering to P. aeruginosa cells but is instead mediated
through the activation of the diguanylate cyclase SiaD. This regulatory control was
also found to be independent of the siderophore pyoverdine and Pseudomonas
quinolone signal, which have previously been proposed to reduce S. aureus viability
by inducing lactic acid fermentation-based growth. In contrast to the effect medi-
ated by Psl, Pel reduced the effective crosslinking of the biofilm matrix and facili-
tated superdiffusivity in microcolony regions. These changes in matrix cross-linking
enhance biofilm surface spreading and expansion of microcolonies in the later
stages of biofilm development, improving overall dual-species biofilm growth and
increasing biovolume severalfold. Thus, the biofilm matrix and regulators associated
with matrix production play essential roles in mixed-species biofilm interactions.

IMPORTANCE Bacteria in natural and engineered environments form biofilms that
include many different species. Microorganisms rely on a number of different strate-
gies to manage social interactions with other species and to access resources, build
biofilm consortia, and optimize growth. For example, Pseudomonas aeruginosa and
Staphylococcus aureus are biofilm-forming bacteria that coinfect the lungs of cystic
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fibrosis patients and diabetic and chronic wounds. P. aeruginosa is known to antago-
nize S. aureus growth. However, many of the factors responsible for mixed-species
interactions and outcomes such as infections are poorly understood. Biofilm bacteria
are encased in a self-produced extracellular matrix that facilitates interspecies behav-
ior and biofilm development. In this study, we examined the poorly understood
roles of the major matrix biopolymers and their regulators in mixed-species biofilm
interactions and development.

KEYWORDS Pseudomonas aeruginosa, SiaD, Staphylococcus aureus, biofilms, cyclic
di-GMP, exopolysaccharide, microrheology

Bacteria exist predominantly as dense, self-organized communities encased in self-
produced matrices known as biofilms (1, 2). They exhibit emergent properties that

are not found in their single-cell planktonic counterparts, such as altered and enhanced
metabolic efficiency (3–5), increased robustness and resistance to antimicrobial attack
(6, 7), altered virulence (8, 9), and enhanced horizontal gene transfer (10, 11). These
emergent properties contribute to their roles in the Earth’s natural cycling of nitrogen
and sulfur and of many metals (12–14) as well as in survival in host organisms, where
they can live as commensals or as pathogens (14). While biofilms usually encompass a
large diversity of bacterial species that have synergistic, mutualistic, competitive, or
antagonistic relationships, the fundamental mechanisms that drive mixed-species bio-
film development and the associated emergent properties remain poorly understood.

Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic pathogens
found in infections of cystic fibrosis (CF) lungs and in diabetic and chronic wounds (14,
15). Such mixed-species infections are correlated with poor clinical outcomes (16);
hence, the two organisms serve as a model dual-species community to represent
polymicrobial infections (17, 18). The two bacterial species are known to have an
antagonistic relationship, where P. aeruginosa produces heptyl-4-hydroxyquinoline
N-oxide (HQNO), a potent inhibitor of respiratory electron transfer and a component of
its Pseudomonas quinolone signal (PQS) system, to kill S. aureus (19). However, this also
selects for S. aureus small-colony variants (SCVs) that have mutations in the electron
transport chain and increased resistance to P. aeruginosa killing (20). This has an impact
on disease prognosis, as the prevalence of S. aureus SCVs is correlated with a more
severe disease state (16). P. aeruginosa also induces the production of the host enzyme
sPLA2-IIA to kill S. aureus (21). While these two species serve as a model system for
polymicrobial infections, the mechanisms of interaction during dual-species biofilm
formation has been less extensively explored.

P. aeruginosa is known to express three polysaccharides, alginate, Pel, and Psl, as the
major matrix components (22). P. aeruginosa isolates from the cystic fibrosis (CF) lung
environment tend to become mucoid through overexpression of alginate (23). How-
ever, only Pel and Psl have been shown to be required for biofilm formation (24, 25).
Psl is important for surface attachment (24, 26, 27), autoaggregative phenotypes in
batch cultures (28–30), and activation of specific enzymes (diguanylate cyclases [DGCs])
to increase intracellular levels of cyclic-di-GMP, triggering P. aeruginosa to enter the
biofilm mode of life (31, 32). Thus, the loss of Psl results in delayed biofilm development
and either a delay in or loss of microcolony formation (25, 26, 33). Pel is often associated
with the formation of floating biofilms (pellicles) and plays a role in biofilm maturation
(24, 26, 33). Pel and Psl have different mechanical properties and resistances to flow
that result in differences in biofilm structure and development (33). In mucoid P.
aeruginosa-S. aureus biofilms, Psl expression led to P. aeruginosa exclusively occupying
the upper layer of biofilms, whereas Pel expression appeared to increase colocalization
of P. aeruginosa and S. aureus (33).

Recently, it was found that protein A, a cell wall protein of S. aureus, binds to the Psl
polysaccharide and type IV pili in P. aeruginosa to inhibit biofilm formation (34). The Psl
polysaccharide is also known to affect the community structure and stress resistance,
where it confers antibiotic protection to the Escherichia coli-S. aureus biofilm commu-
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nity (35), as well as increased P. aeruginosa abundance and SDS tolerance of three-
species biofilms of P. aeruginosa, Pseudomonas protegens, and Klebsiella pneumoniae
(36). Thus, the composition of the biofilm matrix represents an important and yet
largely underexplored mediator of interspecies interactions and confers emergent
properties to the community.

To address how Pel and Psl affect P. aeruginosa competitiveness, biofilm structure,
and rheology in mixed-species biofilm communities, we established dual-species bio-
films of P. aeruginosa and S. aureus. We explored the importance of the structural role
of Psl in the biofilm matrix through analysis of the adhesin CdrA, which physically binds
P. aeruginosa cells to the Psl matrix (28), and the regulatory role of Psl in biofilm
formation through analysis of the diguanylate cyclases SadC and SiaD, which are
activated by Psl to increase c-di-GMP levels (31, 32). In this study, we demonstrate
that Psl enables wild-type P. aeruginosa to outcompete S. aureus in early biofilm
development and that SiaD is necessary for P. aeruginosa to outcompete S. aureus in a
pyoverdine- and PQS-independent manner. In late-stage biofilm development, the
production of Pel is required to reduce the effective cross-linking of the matrix to
increase the spreading surface coverage of P. aeruginosa in dual-species biofilms.

RESULTS
The accumulation of P. aeruginosa in mixed biofilms with S. aureus is facilitated

by Psl during early biofilm formation whereas Pel mediates biofilm maturation.
mCherry-tagged, wild-type P. aeruginosa PAO1 or its isogenic Pel and Psl mutants
(Table 1) was cocultivated with Gfp-tagged wild-type S. aureus 15981 to examine the
impact of the matrix polysaccharides Pel and Psl on the development of P. aeruginosa-S.
aureus biofilms (Fig. 1). Wild-type monospecies biofilms, seeded with the same total cell
densities as the dual-species biofilms, were also formed for comparison to wild-type
dual-species biofilms. The biovolume of each species in the biofilms was calculated
using COMSTAT (Table 2). At 1 h, the monospecies wild-type biofilms had total biovol-
umes of 26,286 � 4,128 �m3 mm�2 (P. aeruginosa) and 39,168 � 2,660 �m3 mm�2

(S. aureus). This was similar to the results seen with dual-species biofilms with a total
biovolume of 28,419 � 4,586 �m3 mm�2, where the two species were present in
approximately equal amounts. For monospecies wild-type P. aeruginosa, the highest
biovolume of 1,548,912 � 682,644 �m3 mm�2 was reached at 13 h and decreased to
277,455 � 292,722 �m3 mm�2 at 19 h. Monospecies wild-type S. aureus had lower
biovolumes (851,130 � 292,722 �m3 mm�2) than monospecies wild-type P. aeruginosa
at 13 h, but its biovolumes increased to 4,068,969 � 1,335,431 �m3 mm�2 by 19 h.

For dual-species wild-type P. aeruginosa-S. aureus, the highest total biovolume was
850,128 � 113,105 �m3 mm�2 at 13 h, with S. aureus comprising only 1.5% or 12,785
�m3 mm�2 of the biovolume. These biovolume levels were unchanged at 19 h, which
contrasts with the monospecies biofilms of P. aeruginosa. This would suggest that P.
aeruginosa biofilms persist longer in the presence of S. aureus. S. aureus made up a
minor portion of biovolumes in the dual-species biofilm and reached a peak biovolume
of 35,015 � 18,203 �m3 mm�2 at 7 h, in contrast to the biovolume seen when it was

TABLE 1 List of bacterial strainsa

Strain Relevant characteristic(s)
Reference
or source

P. aeruginosa wtPAO1 Wild-type strain 64
P. aeruginosa ΔpelA PAO1 that does not produce the Pel matrix polysaccharide 53
P. aeruginosa ΔpslBCD PAO1 that does not express the Psl matrix polysaccharide 53
P. aeruginosa ΔcdrA PAO1 lacking the extracellular adhesin CdrA This study
P. aeruginosa ΔsadC PAO1 lacking the DGC SadC 51
P. aeruginosa ΔsiaD PAO1 lacking the DGC SiaD 51
P. aeruginosa ΔsiaD/pUC18-siaD Carbr; ΔSiaD mutant containing the pUC18-siaD complementation plasmid This study
S. aureus 15981 Wild-type strain 53
awtPAO1, wild-type strain PAO1; Carbr, carboxylate resistance.
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grown as a monospecies biofilm (495,781 � 190,117 �m3 mm�2). This indicates that P.
aeruginosa inhibited S. aureus growth during early biofilm development.

For all dual-species P. aeruginosa-S. aureus biofilms, the biovolume of P. aeruginosa
was roughly equal to the biovolume of S. aureus in the initial phase of biofilm formation
(i.e., after 1 h of inoculation). The average biovolume for each species ranged from
13,045 to 17,662 �m3 mm�2, with the exception of mutant ΔpelA ΔpslBCD-S. aureus
biofilms, where each species displayed approximately half those biovolumes (Fig. 2A)
(Table 2).

During dual-species biofilm development, the average biovolume for both wild-type
P. aeruginosa and the ΔpelA mutant increased by approximately 5-fold during the first
7 h. The average biovolume of wild-type P. aeruginosa increased by 10-fold at 13 h and
remained relatively constant at 792,562 � 10,272 �m3 mm�2 at 19 h. The ΔpelA mutant
increased in biovolume by 3-fold to 4-fold between 7 and 13 h and remained constant

FIG 1 The development of 19-h wild-type P. aeruginosa-S. aureus, P. aeruginosa ΔpelA-S. aureus, and P.
aeruginosa ΔpslBCD-S. aureus dual-species biofilms imaged using confocal imaging every 6 h. The
monospecies wild-type P. aeruginosa and S. aureus biofilms are shown for comparison. P. aeruginosa is
mCherry tagged (red), and S. aureus is Gfp tagged (green). Images are representative of four biological
replicates. The scale bar is 30 �m.

TABLE 2 Biovolumes for single- and dual-species biofilmsa

Biofilm Strain(s)

Biovolume per area (�m3 mm�2)

1 h 7 h 13 h 19 h

Monospecies: P. aeruginosa wtPAO1 26,286 � 4,128 542,412 � 260,428 1,548,912 � 682,644 277,455 � 59,146

Monospecies: S. aureus S. aureus 15981 39,168 � 2,660 495,781 � 190,117 851,130 � 292,722 4,068,969 � 1,335,431

Dual species: P. aeruginosa-
S. aureus

wtPAO1 14,388 � 2,168 73,488 � 21,746 837,343 � 104,916 792,562 � 10,272
S. aureus 15981 14,031 � 2,418 35,015 � 18,203 12,785 � 8,189 10,521 � 3,878

Dual species: mutant
ΔpelA-S. aureus

Mutant ΔpelA 14,285 � 2,693 82,682 � 32,691 220,077 � 52,939* 267,374 � 114,530*
S. aureus 15981 13,045 � 1,993 128,861 � 62,036 6,927 � 2,785 14,982 � 4,887

Dual species: mutant
ΔpslBCD-S. aureus

Mutant ΔpslBCD 14,722 � 799 14,992 � 4,185 178,387 � 48,490* 1,419,718 � 432,200
S. aureus 15981 17,662 � 1,729 62,035 � 15,636 67,605 � 31,815 20,726 � 5,301

Dual species: mutant ΔpelA
ΔpslBCD-S. aureus

Mutant ΔpelA ΔpslBCD 7,611 � 513* 23,988 � 2,379 21,310 � 4,559* 50,401 � 21,795*
S. aureus 15981 7,691 � 2,315 17,752 � 5,103 4,559 � 1,818 1,868 � 701

aData represent results from four biological replicates with each replicate composed of three confocal images of the biofilm in different areas on average. Asterisks (*)
indicate a significant difference from the wild-type P. aeruginosa-S. aureus biofilms (P � 0.05) (unpaired t test with Welch’s correction). Error data represent SEM.
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at 267,374 � 114,530 �m3 mm�2 from 13 to 19 h. For the ΔpslBCD mutant, the average
biovolume was unchanged at 7 h but was found to have increased by approxi-
mately 10-fold at 13 h and a further 10-fold by 19 h to achieve a final biovolume of
1,419,718 � 432,200 �m3 mm�2. For the ΔpelA ΔpslBCD mutant, the average biovol-
ume increased in 3-fold increments at each 6-h time point to a final average biovolume
of 50,401 � 21,795 �m3 mm�2 at 19 h. Thus, the loss of Pel in the dual-species biofilms
was associated with an overall reduction in total biovolume at 13 and 19 h (Fig. 2A).

The average biovolume of S. aureus for all biofilms increased initially but remained
low throughout biofilm development compared to P. aeruginosa and by 19 h had
returned to levels similar to or lower than those observed at the start of biofilm
formation (Table 2) (Fig. 2B). There were no significant differences in the S. aureus
biovolumes of the dual-species biofilms with different combinations of Pel and Psl
expression.

The selection constant rates (rij), representing the ratios of P. aeruginosa over S.
aureus over time, were derived from the biovolume data to determine the competi-
tiveness of the P. aeruginosa wild-type and polysaccharide mutants against S. aureus
(Table 3, columns 2 to 4). Only the ΔpslBCD mutant was less competitive than S. aureus
after 7 h of biofilm formation (Table 3, columns 5 and 6) (Fig. 2C), and the rij value was
significantly different from that determined for the wild-type (P � 0.04, � � 0.05, n �

FIG 2 The development of 19-h biofilms formed by wild-type and matrix mutants of P. aeruginosa cocultured with S.
aureus. Error bars represent standard errors of the means (SEM) (n � 4). *, P � 0.05, � � 0.05 (unpaired two-sided t test
with Welch’s correction). (A) Biovolumes per area of P. aeruginosa (solid lines) in the dual-species biofilms every 6 h. (B)
Biovolumes per area of S. aureus (dashed lines) in the dual-species biofilms every 6 h. Note that the y axis scales for panels
A and B are different. (C) Fitness of P. aeruginosa relative to S. aureus, where a selection constant of rij � 0 means that P.
aeruginosa and S. aureus are equally competitive and a rij value of �0 means P. aeruginosa is more competitive than S.
aureus.

TABLE 3 Competitiveness of P. aeruginosa relative to S. aureus

Biofilm

Selection rate constant, rij
a Correlation of fitness curvesb

7 h 13 h 19 h Biofilm rXY

wtPAO1-S. aureus 0.16 � 0.09 0.43 � 0.07 0.25 � 0.04 wtPAO1-S. aureus with ΔpelA-S. aureus 0.97
Mutant ΔpelA-S. aureus �0.04 � 0.20 0.30 � 0.06 0.15 � 0.04 wtPAO1-S. aureus with ΔpslBCD-S. aureus 0.58
Mutant ΔpslBCD-S. aureus �0.21 � 0.09* 0.12 � 0.01* 0.23 � 0.02 ΔpelA-S. aureus with ΔpslBCD-S. aureus 0.76
Mutant ΔpelA ΔpslBCD-S. aureus 0.06 � 0.02 0.07 � 0.04* 0.18 � 0.07 wtPAO1-S. aureus with ΔpelA ΔpslBCD-S. aureus -0.11
Mutant ΔsiaD-S. aureus 0.11 � 0.06 0.07 � 0.04* 0.01 � 0.01* ΔpelA-S. aureus with ΔpelA ΔpslBCD-S. aureus 0.13
Mutant ΔsiaD(siaD)-S. aureus 0.23 � 0.05 0.19 � 0.04 0.18 � 0.05 ΔpslBCD-S. aureus with ΔpelA ΔpslBCD-S. aureus 0.75
aData represent selection rate constants during 19 h of biofilm development determined from four biological replicates, with each replicate derived from an average
of three confocal images. Asterisks (*) indicate a significant difference from the wild-type P. aeruginosa-S. aureus biofilms (P � 0.05) (unpaired t test with Welch’s
correction). Error data represent SEM.

bCorrelation of fitness curves is given by the Pearson correlation coefficient (rXY).
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4). At 13 h, the ΔpslBCD mutant was more competitive than S. aureus but the compet-
itiveness was still lower than and significantly different from that seen with the
wild-type (P � 0.02, � � 0.05, n � 4). The ΔpelA ΔpslBCD mutant was significantly less
competitive than the wild-type strain against S. aureus at 13 h (P � 0.01, � � 0.05, n �

4) (Table 3, columns 2 to 4) (Fig. 2C). By 19 h, both the ΔpslBCD and ΔpelA ΔpslBCD
mutants were as competitive as the wild-type strain against S. aureus.

Although the ΔpelA mutant was less competitive than the wild-type strain against
S. aureus throughout biofilm formation, the differences were not statistically significant
(Table 3, columns 2 to 4) (Fig. 2C). Based on the rij values, changes in the competitive-
ness of the ΔpelA mutant and wild-type P. aeruginosa were also similar for the
dual-species biofilms, with rij reaching a peak at 13 h and the rij over time (fitness
curves), displaying a strong positive correlation of rXY � 0.97 (Table 3, columns 5 and
6) (Fig. 2C). Thus, Psl contributes to the competitive fitness of the wild-type strain only
during the early stages of P. aeruginosa-S. aureus biofilm development.

S. aureus and Pel production are associated with an increase in surface cover-
age and in the microcolony size of P. aeruginosa in dual-species biofilms. To
explore how Pel and Psl affected the structure of dual-species biofilms (Fig. 1), the
average surface coverage, the number of microcolonies, and the microcolony sizes of
13-h and 19-h biofilms were calculated (Table 4). Monospecies wild-type biofilms were
also investigated for comparison to the dual-species, wild-type biofilms (Table 4).
Microcolonies included small and large cell clusters, which ranged in size over various
orders of magnitude (Fig. 3).

Wild-type P. aeruginosa displayed the highest surface coverage at 13 h compared to
the matrix mutants in the dual-species biofilms. Wild-type P. aeruginosa had a surface
coverage of 19% � 3%, while the ΔpelA and ΔpslBCD mutants had similar surface
coverages at 8% � 1% and 7% � 3%, respectively, and the ΔpelA ΔpslBCD mutant
displayed a surface coverage of 3% � 1% (Table 4). At 19 h, biofilms of wild-type P.
aeruginosa and mutants ΔpelA and ΔpelA ΔpslBCD were similar to the 13-h biofilms at
22% � 0%, 9% � 3%, and 5% � 2% surface coverage, respectively, whereas the
ΔpslBCD mutant surface coverage increased to 33% � 14% (Table 4). The surface
coverage of S. aureus in the dual-species biofilms at 13 and 19 h ranged from 0% to 2%
irrespective of whether wild-type or mutant P. aeruginosa was included (Table 4). P.
aeruginosa had more surface coverage in dual-species biofilms than in monospecies
biofilms at both 13 and 19 h. However, S. aureus had much less surface coverage at 13
and 19 h in cocultures with P. aeruginosa (Table 4).

Wild-type P. aeruginosa formed the greatest number of microcolonies compared to
the mutants in the dual-species biofilms. The average microcolony size was 108 � 7

TABLE 4 Surface coverage, microcolony size, and number of microcolonies in single- and mixed-species biofilmsa

Biofilm Strain(s)

Avg surface
coverage (%)

Avg no. of microcolony
per area (mm�2)

Avg microcolony
biovolume (�m3)

13 h 19 h 13 h 19 h 13 h 19 h

Monospecies: P. aeruginosa wtPAO1 14 � 4 10 � 2 1,757 � 386 1,974 � 360 109 � 46 58 � 23

Monospecies: S. aureus 15981 S. aureus 15981 20 � 5 40 � 10 2,520 � 552 3,325 � 507 1,346 � 3,035 7,356 � 2,279

Dual species: P. aeruginosa-
S. aureus

wtPAO1 19 � 3 22 � 0 5,265 � 489 3,716 � 462 108 � 7 499 � 91
S. aureus 15981 0 � 2 0 � 0

Dual species: mutant
ΔpelA-S. aureus

Mutant ΔpelA 8 � 1 9 � 3 1,025 � 302 2,581 � 1,117 67 � 5 111 � 19
S. aureus 15981 0 � 0 1 � 0

Dual species: mutant
ΔpslBCD-S. aureus

Mutant ΔpslBCD 7 � 3 33 � 14 1,043 � 756 4,661 � 2,407 50 � 4 1,400 � 358
S. aureus 15981 2 � 1 1 � 0 207 � 138 85 � 85 65 � 16 65 � 15

Dual species: mutant ΔpelA
ΔpslBCD-S. aureus

Mutant ΔpelA ΔpslBCD 3 � 1 5 � 2
S. aureus 15981 1 � 0 0 � 0

aValues are derived from three biological replicates, with each replicate derived from an average of three confocal images. Error data represent SEM.
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�m3 at 13 h and increased to 499 � 91 �m3 by 19 h (Table 4) (Fig. 3A). Wild-type P.
aeruginosa also formed more microcolonies as a dual-species biofilm than as a mono-
species biofilm. The sizes of the microcolonies formed by P. aeruginosa in dual-species
biofilms and monospecies biofilms were similar at 13 h, but the microcolonies in the
dual-species biofilms were about 10 times larger than in the monospecies biofilms
by 19 h.

The ΔpelA mutant formed approximately 5-fold-fewer microcolonies than the wild-
type strain, and the average microcolony size was 67 � 5 �m3 at 13 h. By 19 h, the
number of microcolonies had not increased, but the average microcolony size in-
creased to 111 � 19 �m3 (Table 4). The microcolony size distributions were not
significantly different as the biofilm progressed from 13 to 19 h (Fig. 3B). The ΔpelA
microcolony size was significantly smaller than the wild-type microcolony size at both
13 h (Fig. 3E) and 19 h (Fig. 3F).

The ΔpslBCD mutant also formed approximately 5-fold-fewer microcolonies than the
the wild-type strain by 13 h, and the average microcolony size was 50 � 4 �m3. By
19 h, the number of microcolonies had increased by �5-fold and the average micro-
colony size had increased to 1,400 � 358 �m3 (Table 4). The microcolony size distri-
bution at 19 h was larger than and significantly different from that seen of 13 h of
biofilm development, with the difference between the two distributions being as large
as 46% (Fig. 3C). The ΔpslBCD microcolony size distribution was smaller than that of the
wild-type strain at 13 h (Fig. 3G) but was larger at 19 h (Fig. 3H).

The ΔpelA ΔpslBCD mutant did not form microcolonies in the dual-species biofilms.
S. aureus also did not form microcolonies in any of the dual-species biofilms except
when cultivated with the ΔpslBCD strain, with average microcolony sizes of 65 � 16

FIG 3 Comparison of microcolony sizes in dual-species biofilms using the two-sample, two-sided Kolmogorov-Smirnov
test. The red curve shows the difference between the two distributions (*, P � 0.05, **, P � 0.01, ***, P � 0.001; � � 0.05).
(Top panel) Changes in size distribution as biofilms progresses from 13 to 19 h. (A to D) P. aeruginosa microcolonies in (A)
wild-type P. aeruginosa-S. aureus, (B) mutant ΔpelA-S. aureus, and (C) mutant ΔpslBCD-S. aureus biofilms and S. aureus
microcolonies in (D) mutant ΔpslBCD-S. aureus biofilms. (Bottom panel) Differences between P. aeruginosa microcolony size
distributions formed by wild-type and matrix mutants of P. aeruginosa cocultured with S. aureus. (E and F) Wild-type P.
aeruginosa-S. aureus compared to mutant ΔpelA-S. aureus at (E) 13 h and (F) 19 h. (G and H) Wild-type P. aeruginosa-S.
aureus compared to mutant ΔpslBCD-S. aureus at (G) 13 h and (H) 19 h.
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�m3 at 13 h and 65 � 15 �m3 by 19 h (Fig. 3D). Thus, expression of Psl was required for
microcolony formation of P. aeruginosa and hindered S. aureus biofilm formation.
Expression of Pel was required for expanding surface coverage and microcolonies.

Pel and Psl have opposing rheological roles in the matrix of the microcolonies.
Biofilm rheological properties conferred by Pel and Psl affect biofilm structure and
spreading at different stages in monospecies P. aeruginosa biofilms under flow condi-
tions (33). Specifically, Psl cross-links the biofilm to increase microcolony formation
and reduce spreading at the early stages, while Pel loosens the biofilm to increase
spreading at the later stages of biofilm development (33). Thus, we investigated the
rheological properties of 19-h dual-species biofilms using particle-tracking mi-
crorheology (37, 38) to determine if the mechanical roles of Pel and Psl in mono-
species flow cell biofilms were maintained in P. aeruginosa-S. aureus static biofilms.
If so, this could explain the increased surface coverage and microcolony sizes
observed in P. aeruginosa-S. aureus biofilms expressing Pel.

The mean squared displacement (MSD) of particles embedded within microcolonies
of 19-h biofilms was directly proportional to their creep compliance (J) and effective
cross-linking (39, 40). The changes in effective cross-linking could have been due to
differences in polymer chain length and concentration and degree of polymer entan-
glement and to interactions between different polymers. The interactions between
polymers can be chemical (operating through covalent bonds), physical (operating
through noncovalent interactions), or topological, depending on the polymeric entan-
glements. The MSDs were plotted as a function of lag time (elapsed time; 1 s � t � 100
s) to give the MSD curves from which the power law exponent (�) can be derived. When
� � 1, the particle is considered to be undergoing normal diffusion; when � � 1, this
is termed subdiffusion; and when � � 1, they are considered to be undergoing
superdiffusion (41, 42). The diffusive regime also informs one of the rheological
environment in which the particle is embedded. For example, when � � 0, the
substance is purely elastic; when 0 � � � 1, the substance is viscoelastic; and when � �

1, the substance is purely viscous (37, 38). The undifferentiated layers in wild-type P.
aeruginosa-S. aureus and mutant ΔpelA-S. aureus that trapped the particles were too
thin for investigation without an attachment to or a capillary effect from the substratum
and hence were not investigated. The rheological parameters of the sterile TSB medium
(17 g liter�1 casein peptone, 2.5 g liter�1 K2HPO4, 2.5 g liter�1 glucose, 5 g liter�1 NaCl,
3 g liter�1 soya peptone) were characteristic of a viscous Newtonian fluid at � � 1.04
and J � 11,500 � 789 Pa�1 at t � 101 s (Fig. 4A) (Table 5). In comparison, the wild-type
P. aeruginosa-S. aureus microcolonies displayed creep compliance of J � 3 � 2 Pa�1 at
t � 101 s and a power law exponent � value of 0.87 (Fig. 4A). In addition, several

FIG 4 Microrheological measurements of wild-type and matrix mutants of P. aeruginosa cocultured with
S. aureus. (A) MSD curves for wild-type P. aeruginosa-S. aureus, mutant ΔpelA-S. aureus, and mutant
ΔpslBCD-S. aureus microcolonies. The MSD curve for TSB medium is shown for comparison. SA, S. aureus.
The orange dotted lines indicate the line of best fit to the experimentally determined MSD using a power
law function for the estimation of �. (B) Representative particle trajectories in wild-type P. aeruginosa-S.
aureus, mutant ΔpelA-S. aureus, and mutant ΔpslBCD-S. aureus microcolonies. The red trajectory in the
middle panel indicates a particle undergoing directed motion and superdiffusion, whereas the blue and
yellow trajectories indicate subdiffusion. Error bars represent SEM.
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particles were observed to undergo superdiffusion, which was also defined by their
directional movement, with a net displacement of 1 to 3 �m within a 15-min period,
compared to particle vibrations, with a net displacement of �1 �m (Fig. 4B) and � �

1.59 (see Fig. S1 in the supplemental material).
The ΔpelA-S. aureus microcolonies had lower particle MSDs and thus were more

effectively cross-linked than wild-type P. aeruginosa-S. aureus biofilm microcolonies
(Fig. 4A). None of the particles were observed to undergo superdiffusion (Fig. 4B). The
microcolonies had a creep compliance J � 2 � 0 Pa�1 at t � 101 s and were more
elastic (� � 0.74) (Table 5).

Particles in mutant ΔpslBCD-S. aureus microcolonies were less confined, indicating a
reduction in cross-linking (Fig. 4B). Mutant ΔpslBCD-S. aureus biofilms had creep compliance
of 1,294 � 109 Pa�1 and were more elastic (� � 0.41) (Table 5). The viscoelastic properties
of the microcolonies formed in the dual-species P. aeruginosa-S. aureus and mutant ΔpelA-S.
aureus biofilms in this study were different from those seen with the monospecies P.
aeruginosa biofilms cultivated under flow conditions, as previously reported (33), where the
microcolonies were elastic. However, the cross-linking role of Psl and matrix loosening
mediated by Pel in monospecies biofilms were maintained in the P. aeruginosa-S. aureus
community, regardless of flow conditions. The reduced matrix stiffness conferred by Pel
may have contributed to the superdiffusive microenvironment for enabling microcolony
expansion and increased surface coverage.

The competitive fitness of P. aeruginosa requires DGC SiaD. According to the
selection constant rates (rij), changes in the extent of competitiveness of the ΔpelA
mutant over S. aureus were similar to those seen with wild-type P. aeruginosa during
dual-species biofilm development, whereas ΔpslBCD and ΔpelA ΔpslBCD mutants were
less competitive in early biofilms (Fig. 2B) (Table 3, columns 5 and 6). This suggests that
Psl is important for the competitive fitness of P. aeruginosa during early biofilm
development. Psl has an active signaling role in biofilm formation, where it stimulates
the activity of two DGCs, SiaD and SadC, thereby elevating intracellular c-di-GMP
content (31, 32). This mechanism may also facilitate the competitiveness of P. aerugi-
nosa in the P. aeruginosa-S. aureus community (31, 32). Indeed, ΔpslBCD mutants are
delayed in biofilm development (25), which may have allowed S. aureus to form
microcolonies in the dual-species biofilm.

P. aeruginosa competitiveness may also be associated with other molecules that
interact with Psl. CdrA is a P. aeruginosa adhesin that binds to Psl and cross-links Psl
polysaccharide polymers to increase the structural stability of the biofilm (28). We thus
examined the effects of SiaD and SadC as well as of CdrA on P. aeruginosa competi-
tiveness. The ΔcdrA and ΔsadC mutants dominated the dual-species biofilms, indicating
that CdrA and SadC were not essential for P. aeruginosa competitiveness (Fig. 5A and
B). Their fitness curves are given in Fig. S2. The biofilms were largely flat and undiffer-
entiated, with small microcolonies (Fig. 5B). The loss of the SiaD DGC resulted in a
significant reduction in competitive fitness for P. aeruginosa in mutant ΔsiaD-S. aureus
biofilms, with rij � 0.07 � 0.04 at 12 h and rij � 0.01 � 0.01 at 19 h, which were different
from the results seen with the wild-type strain (P � 0.01, � � 0.05, n � 4) (Table 3,
columns 2 to 4) (Fig. S2). There was little colocalization of P. aeruginosa and S. aureus
in the biofilms, and S. aureus formed homogenous microcolonies devoid of P. aerugi-
nosa ΔsiaD cells (Fig. 5C). The rheological properties of these microcolonies, with
monospecies S. aureus microcolonies investigated for comparison, are shown in

TABLE 5 Viscoelasticity and creep compliance of 19-h biofilms formed by P. aeruginosa
and matrix polysaccharide mutants with S. aureus, respectively

Biofilm Region � J(t) (t � 101 s, Pa�1)

Medium (negative control) Liquid phase 1.05 11,500 � 789
wtPAO1-S. aureus Microcolony 0.87 3 � 2
Mutant ΔpelA-S. aureus Microcolony 0.74 2 � 0
Mutant ΔpslBCD-S. aureus Loose microcolony 0.41 1,294 � 109
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Table S1 and Fig. S3 in the supplemental material. Genetic complementation of the
ΔsiaD mutant restored P. aeruginosa competitiveness (rij � 0.18 � 0.05), and the
formation of microcolonies was dominated by P. aeruginosa after 19 h (Table 3,
columns 2 to 4) (Fig. 5D). P. aeruginosa dominated regions of mutant ΔcdrA-S. aureus,
mutant ΔsadC-S. aureus and mutant ΔsiaD-S. aureus biofilms (Fig. 5) and had higher
particle MSDs than the wild-type strain but less than the mutant ΔpslBCD-S. aureus
microcolonies (Fig. 6). Thus, Psl remained the major contributor of matrix cross-linking
although CdrA and c-di-GMP, though the SadC and SiaD signaling pathway also
contributed to matrix cross-linking and biofilm stability. Further details of the number
and size of microcolonies and of the rheological properties of the biofilm structures are
given in Table S1.

SiaD-mediated competition is siderophore and PQS independent. P. aeruginosa
uses the iron siderophore pyoverdine and products of pqs genes, such as N-oxo-2-
heptyl-4-hydroxyquinoline (HQNO), to outcompete S. aureus in cocultures (18, 43).
Hence, we examined whether the P. aeruginosa SiaD-mediated competition with S.
aureus involved pyoverdine and PQS expression. The pyoverdine levels of the dual-
species biofilms were estimated by measuring fluorescence at 450 nm, the peak level
of emission for pyoverdine (44). The PQS levels were determined based on Gfp
fluorescence using a PQS biosensor strain, ΔpqsC(pqsA-gfp), where the ΔpqsC mutant is
unable to synthesize its own PQS and pqsA-gfp can only be induced by exogenously
added PQS (45). Using these approaches, we found that the levels of production of
pyoverdine (Fig. 7A) and PQS (Fig. 7B) of wild-type P. aeruginosa and the SiaD mutant
were similar and that complementation of SiaD resulted in pyoverdine and PQS levels
lower than those measured for the wild type. These results suggest that the inability of
the SiaD mutant to compete with S. aureus was not due to a deficiency of pyoverdine
and PQS production.

FIG 5 Confocal images of 19-h biofilms of P. aeruginosa CdrA and diguanylate cyclase mutants cocultured with S.
aureus. (A) P. aeruginosa ΔcdrA-S. aureus. (B) P. aeruginosa ΔsadC-S. aureus. (C) P. aeruginosa ΔsiaD-S. aureus. (D) P.
aeruginosa ΔsiaD(siaD)-S. aureus. P. aeruginosa was mCherry tagged (red), and S. aureus was Gfp tagged (green).
Images are representative of results from at least three biological replicates. The scale bar is 30 �m.

FIG 6 MSD curves for P. aeruginosa ΔsiaD-S. aureus, P. aeruginosa ΔcdrA-S. aureus, and P. aeruginosa
ΔsadC-S. aureus microcolonies. SA, S. aureus. The orange dotted lines indicate the line of best fit to the
experimentally determined MSD using a power law function for the estimation of �. Error bars
represent SEM.
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DISCUSSION

Coinfections of P. aeruginosa and S. aureus are often found in patients with cystic
fibrosis (CF) and with diabetic and chronic wounds. Such mixed-species infections are
correlated with poor clinical outcomes (16); hence, these two organisms serve as a
model, dual-species community to represent polymicrobial infections (18, 43, 46). The
interactions between the two organisms affect the efficacy of antimicrobial treatments
(46). P. aeruginosa has been found to compete with S. aureus for oxygen and to induce
the bacterium to shift to fermentative metabolism to produce lactate, which P. aerugi-
nosa consumes (18). P. aeruginosa can also lyse S. aureus to obtain iron. This is mediated
through induction of PQS-dependent virulence genes as well as the production of
siderophores (43). However, detailed investigation of interspecies interactions during
dual-species biofilm formation and the role of the biofilm matrix in enabling interspe-
cies interactions and determining community structure have been less extensively
explored.

In this study, P. aeruginosa restricted S. aureus growth and biofilm formation,
whereas in the presence of S. aureus, P. aeruginosa showed an increased surface
coverage and number of microcolonies. Further, P. aeruginosa microcolonies were
larger and the overall biovolume was higher when S. aureus was present. Similar
observations were previously reported for these dual-species combinations, where it
was suggested that P. aeruginosa lysed S. aureus to be used as a nutrient source (18, 43).
Pel and Psl polysaccharides were not required for P. aeruginosa to outcompete S.
aureus, which was similar to the result seen with mucoid P. aeruginosa-S. aureus biofilms
(33). Nevertheless, distinct effects contributed by the polysaccharides, such as reduced
formation of S. aureus microcolonies during early biofilm development (mediated by
Psl) and increased biofilm biovolumes of P. aeruginosa during mid- to late-stage biofilm
development by Pel, were observed. These findings are consistent with a shift in
production with time of biofilm formation, from Psl to Pel, similar to that documented
for monospecies biofilms (33). In addition, the data indicate that Pel increases surface
coverage throughout biofilm development and expands the microcolony size in mature
biofilms. This finding aligns with that of our previous study, i.e., that Pel enhances
spreading in monospecies biofilms (33). The latter study also attributed the differences
in biofilm structures to Psl generating a more elastic and cross-linked matrix and Pel
contributing a loose and viscoelastic matrix. Indeed, in agreement with the results
obtained for monospecies biofilms, we found that Psl increased the effective cross-
linking of the microcolonies in dual-species biofilms (Fig. 4), making them less compli-
ant (Table 5) and more compact (Fig. 1). Psl was the major contributor of effective

FIG 7 Relative levels of pyoverdine and PQS in 19-h P. aeruginosa-S. aureus biofilms. (A) Pyoverdine, as
indicated by its fluorescence at an emission peak of 450 nm. (B). PQS, as indicated by the fluorescence
emission of the green fluorescent protein from the PQS biosensor strain, mutant ΔpqsC(pqsA-gfp). Values
are means (� standard deviations [SD]) of relative fluorescence units (RFU) determined from three
biological replicates.
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cross-linking in the biofilm, while the CdrA adhesin and biofilm regulatory components
SadC and SiaD played less of a role (Fig. 6) (see also Table S1 in the supplemental
material).

Interestingly, the microcolonies that expressed only Pel were more elastic than the
microcolonies that expressed only Psl, and the microcolonies that expressed both Pel
and Psl were the most viscous. This indicated that the rheological contributions of the
polysaccharides were not simply additive and that the physical structure changed in
the absence of one of these polysaccharides. In addition to changes in the mechanical
properties of the biofilm in the presence of S. aureus, it is possible that the Psl matrix
is more viscous when it is produced under static versus flow conditions. This may reflect
observations of biofilms on rocks beneath waterfalls that are constantly exposed to
high shear (47, 48). The expression levels of both Pel and Psl were associated with
superdiffusion of particles and with a more compliant biofilm matrix (Fig. 4) (Table 5).
The superdiffusion of particles could be the result of fast movement of cells. P.
aeruginosa is known to be motile, mediated by swimming, swarming, and twitching
based processes. Superdiffusion could also be the result of particles travelling direc-
tionally through biofilm channels. For example, Birjiniuk et al. (2014) observed particle
trajectories that indicated that the particles were travelling from top to the bottom of
the biofilm through interconnected fluid-filled microscale channels (49).

The ability of Psl to initiate P. aeruginosa biofilm formation and mediate competitive
fitness may be linked to its ability to facilitate biofilm formation through activating
DGCs, leading to c-di-GMP production. Indeed, the SiaD DGC, activated by Psl (31), was
critical for P. aeruginosa competitiveness in the dual-species biofilms (Fig. 5). Without
SiaD, P. aeruginosa and S. aureus were equally competitive, with rij � 0.01 � 0.04 at
19 h, with S. aureus establishing many microcolonies in the dual-species biofilm (Fig. 5).
Moreover, SiaD induces autoaggregation in P. aeruginosa when exposed to SDS stress
(50) and /tellurite (TeO3

2–) (32). In a previous study (50), Psl was found to be essential
for autoaggregation. Hence, it is possible that SiaD is activated by exoproducts from S.
aureus, providing a mechanism by which P. aeruginosa can sense S. aureus to induce
autoaggregation and biofilm formation.

P. aeruginosa is known to outcompete S. aureus using the siderophore pyoverdine
and downstream products of the PQS biosynthetic pathway in planktonic cultures (18,
43). In monospecies P. aeruginosa biofilms, SiaD has been found to negatively control
pyoverdine production (51). Similarly, high c-di-GMP concentrations reduce PQS pro-
duction (52). Thus, it was unexpected that the production levels of pyoverdine and PQS
in the ΔsiaD mutant were not increased but rather were similar to those seen with
wild-type P. aeruginosa biofilm cocultures (Fig. 7). Complementation of the siaD mutant
resulted in pyoverdine and PQS levels similar to the levels seen with wild-type P.
aeruginosa monospecies biofilms but not dual-species wild-type biofilms (Fig. 7). This
indicated that the overproduction of PQS in the siaD mutant does not play a significant
role in the competitive phenotype here and that the impact of overproducing SiaD and,
hence, of elevated c-di-GMP levels drives competition through another factor that is
siderophore and PQS independent. Further investigation is required to understand the
underlying mechanism of how SiaD activity increases the competitiveness of P. aerugi-
nosa.

The findings presented here provide novel information on the mechanisms by
which the P. aeruginosa-S. aureus dual-species biofilms are established and how P.
aeruginosa dominates the community during biofilm development. We summarize the
findings in Fig. 8, where we show that the Psl polysaccharide is required for initial
competition whereas the Pel polysaccharide enables the predominance of P. aerugi-
nosa in mature, dual-species biofilms (Fig. 8A). It is also clear that the SiaD cyclase is
important for P. aeruginosa competitiveness, which occurs in a pyoverdine- and PQS-
independent fashion, with the siaD mutant producing amounts similar to those pro-
duced by the wild-type strain and the complemented siaD mutant producing less than
the wild-type, dual-species biofilms (Fig. 8B). This highlights the fact that the regulatory
mechanisms governing competition between P. aeruginosa and S. aureus are likely to
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be complex, incorporating recognition of a competitor and temporal regulation of
different factors that impact the dual-species interactions. These results help to increase
understanding of the mechanisms by which these two opportunistic pathogens inter-
act during biofilm formation and could suggest strategies for the control of dual-
species infections.

MATERIALS AND METHODS
Bacterial strains. The bacterial strains and plasmids used in this study are listed in Table 1. Overnight

cultures of P. aeruginosa were grown in 100% LB medium (10 g liter�1 NaCl, 5 g liter�1 yeast extract, and
10 g liter�1 tryptone) at 37°C with shaking (200 rpm). S. aureus was grown in 100% TSB medium (17 g
liter�1 casein peptone, 2.5 g liter�1 K2HPO4, 2.5 g liter�1 glucose, 5 g liter�1 NaCl, 3 g liter�1 soya
peptone) at 37°C with shaking (200 rpm).

Construction of Pseudomonas aeruginosa mutants. The ΔsadC and ΔsiaD mutants, defective in
production of SadC and SiaD diguanylate cyclases, respectively, were constructed by homologous
recombination as previously described (51, 53). The ΔcdrA mutant, defective for the CdrA adhesin, was
constructed by homologous recombination using lambda Red recombinase as previously described (54)
with a Multisite Gateway (Thermo Fisher Scientific, MA) LR expression clone containing the PCR product
5= CdrA upstream fragment, gentamicin gene, 3= CdrA downstream fragment (primers 5= CdrA upstream
F [GGGG ACA ACT TTG TAT AGA AAA GTT G AGGGTCTTGCCTTCCAGTTC] and R [GGGG AC TGC TTT TTT
GTA CAA ACT TG GAAAATCTCCCTATCTGCGTGG] and 3= CdrA downstream F [GGGG ACA GCT TTC TTG
TAC AAA GTG G TCCTCGAAAACCCGTTCCTG] and R [GGGG AC AAC TTT GTA TAA TAA AGT TG CTTCGT
ATCGCTGCTGTTGC]). A pUCP18-siaD plasmid (51) was used to genetically complement the P. aeruginosa
ΔsiaD mutant.

Cultivation of static biofilms. Overnight cultures of P. aeruginosa and S. aureus were diluted with
TSB medium to optical densities at 600 nm (OD600) of 0.01 and 0.02, respectively, to yield cell densities
of approximately 2 � 107 CFU ml�1. For monospecies biofilm cultivation, �-Side eight-well microscopy
chambers (ibidi, Martinsried, Germany) were inoculated with 200 �l of diluted overnight cultures of P.
aeruginosa or S. aureus. For dual-species biofilms, �-Slide eight-well microscopy chambers were inocu-
lated with 100 �l of P. aeruginosa and S. aureus each to give total initial cell densities similar to those of
the monospecies biofilms with 1:1 ratios. The cultures were incubated at 37°C under static conditions.

Biofilm image acquisition and analysis. Biofilms were visualized using a Zeiss LSM780 confocal
scanning laser microscopy (Oberkochen). P. aeruginosa strains were fluorescently marked using miniTn7-
mCherry (55). mCherry was detected using an argon laser for excitation at a wavelength of 568 nm and
a low-pass emission filter at a wavelength of 590 nm. S. aureus 15981 was fluorescently marked using
pSB2019, expressing Gfp (56). Gfp was detected using an argon laser for excitation at a wavelength of
488 nm and a broad-pass emission filter at wavelengths of 500 to 530 nm. Images were reconstructed
using the Imaris software package (Bitplane, AG), and the biovolumes, microcolony numbers and sizes,
and surface coverage values were calculated using COMSTAT (www.comstat.dk; see Table S1 in the
supplemental material) (57, 58). Biovolumes were measured and calculated from four biological repli-
cates, whereas microcolony sizes and surface coverages were calculated from three biological replicates.
Each biological replicate was derived from an average of three confocal images. The mean and variance
of microcolony sizes were derived after logarithmic transformation of the data according to their
lognormal distribution (59). Significant differences between the distributions of microcolony sizes were
determined by the Kolmogorov-Smirnov test. The competitiveness of bacterial species i over j was
expressed as the selection rate constant (rij), which was calculated according to the equation rij �

FIG 8 Schematic showing how matrix polysaccharides and SiaD contribute to P. aeruginosa predomi-
nance in dual-species P. aeruginosa-S. aureus communities. (A) Psl enhances P. aeruginosa competitive-
ness in early stages, possibly via SiaD activation, whereas Pel enables biofim expansion to increase P.
aeruginosa predominance in the later stages. (B) Dominance of wild-type P. aeruginosa and SiaD and SiaD
complement mutant over S. aureus, with their corresponding PQS/pyoverdine (PVD) levels.

Polysaccharides and DGC Alter Biofilm Community Structure ®

November/December 2018 Volume 9 Issue 6 e00585-18 mbio.asm.org 13

 on D
ecem

ber 11, 2018 by guest
http://m

bio.asm
.org/

D
ow

nloaded from
 

http://www.comstat.dk
https://mbio.asm.org
http://mbio.asm.org/


ln� Ni�t�
Ni�0���ln� Nj�t�

Nj�0��
t

, where t is time in hours and N is the biovolume of species i or j at the start (t � 0)

or at time t (60). The competitiveness levels of the two different species are equal when rij � 0.
Microrheology. Fluorescent latex beads 1.0 �m in diameter and with carboxylate modification

(Invitrogen, CA) were dispersed in TSB medium to reach a final concentrations of 18.2 � 106 particles
ml�1, and medium was used to dilute the overnight cultures and to grow biofilms. After particle
incorporation into the biofilms, their movement was tracked by fluorescence microscopy with a 63�
objective (Zeiss Axio Observer Z1). The motion of particles in the cocultures was captured in 15-min
videos at frame rates of 1 to 5 fps. The particle trajectories were obtained with ImageJ (https://fiji.sc/) (61)
plugin Mosaic Particle Tracker (62). The trajectories were pooled for each biofilm, and the mean squared
displacement (MSD) values were calculated and analyzed using msdanalyzer (63), a MATLAB class for
MSD analysis. The MSD is proportional to the creep compliance, J(t), of the material according to the
following relation:

J�t� �
3�d

4kBT
MSD�t�

where J � creep compliance, d � particle diameter, kB � Boltzman constant, and T � temperature (37,
39). The microrheological properties are related to the MSD levels, which in our work here are well
described by MSD (t) � t� (37, 38, 41). The values of � were extracted from the logarithmic fit to the MSD
for a lag time range of approximately 1 s to 100 s. The R2 values of the curves were greater than 0.96.

Pyoverdine and Pseudomonas quinolone signal (PQS) assay. Monospecies and dual-species
biofilms were grown in 24-well plates for 19 h (Nunc 142475 Nunclon). The wells were centrifuged at
13,000 � g for 3 min to separate and obtain cell pellets and supernatants. The cell pellets were
resuspended and plated onto Pseudomonas isolation agar for CFU counting of P. aeruginosa cells. Cells
from monospecies S. aureus biofilms were plated on TSB agar for CFU counting. The supernatants filtered
with 0.2-�m-pore-size Acrodisc PF syringe filters with Supor membrane (Pall Life Sciences, USA). For the
pyoverdine assay, the relative levels of pyoverdine in the supernatants were estimated from their
emission fluorescence at 450 nm using laser excitation at 400 nm with a Magellan Tecan Infinite 200
Pro microplate reader (Männedorf). For the PQS assay, 100 �l of 50� diluted overnight cultures of
PQS biosensor strain ΔpqsC(pqsA-gfp) was mixed with 100 �l of the filtered biofilm supernatants. The
mixtures were then cultivated in a 96-well microplate at 37°C. Green fluorescent protein (GFP) fluores-
cence from pqsA-gfp expression was measured using a Magellan Tecan Infinite 200 Pro microplate reader
(Männedorf) to indicate PQS levels. All emission fluorescence readings were normalized to the CFU of P.
aeruginosa.
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