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ABSTRACT: We examine the motion of a knot along a tensioned
chain whose backbone is corrugated due to excluded volume effects.
At low applied tensions, the knot traverses the chain diffusively, while
at higher tensions the knot makes slow, discrete hops that can be
described as a Poisson process. In this “jammed” regime, the knot’s
long-time diffusivity decreases exponentially with increasing tension.
We quantify how these measurements are altered by chain rigidity
and the corrugation of the polymer backbone. We also characterize
the energy barrier of the reptation moves that gives rise to the knot’s
motion. For the simple knot types examined thus far (31, 41, 51, 52),
the dominant contribution to the energy landscape appears in the first
step of reptationi.e., polymer entering the knotted core. We hope this study gives insight into what physics contributes to the
internal friction of highly jammed knots.

Ever since the discovery of knots in DNA,1−3 there has been
immense interest in understanding how these structures

affect the mechanical and dynamical properties of these
molecules.4 A knot is defined as a self-entanglement that
cannot be undone when the polymer chain is closed.5 The
topology of a knot is well-defined as long as it is far from the
ends of a polymer chain, and the topology can be determined
by closing the chain and then computing Alexander
polynomials.6 Experimentally, knots have been tied onto
DNA7 and actin8 filaments via optical traps, and chemical
synthesis techniques have been developed to create knotted
loops up to five crossings.9 Recently, researchers have also
determined facile methods to create knotted DNA via an
electric field,10,11 and this work has led to microfluidic
experiments examining how the coil−stretch transition is
affected by the presence of knots.12

In some sense, knots are unavoidable for very long polymeric
chains, as it has been proven that the knotting probability
approaches unity as the chain size gets very large.13,14 Indeed,
knots have been found in capsid DNA,1 proteins,15−17 and
other biological systems.4 Bao et al. discovered that knots can
self-reptate along a polymer contour due to thermal
fluctuations.7 This discovery has led several computational
studies to quantify the knot’s motion along a chain, whether it
be convection due to a directed force18−20 or diffusion under
uniform tension.21−23 In most of these studies, the tension on
the polymer is comparable to or smaller than the Brownian
forcesi.e., f ∼ O(kT/lp) or smaller, where kT is the thermal
energy and lp is the persistence length of the chain. However, it
is known that at large tensions knots can dynamically arrest
this has been observed for knots jamming during translocation
through a nanopore.24−27 Huang and Makarov briefly study
jamming in their simulations,23 positing that the knot’s arrest is
caused by the “bumpiness of the energy landscape of the knot

created by intrachain interactions”. We explore this topic in this
Letter. We note that this area of research is of interest to the
polymer physics community as it can provide insight into what
effects contribute to the strong friction between chain
entanglements.
We model our polymer as a bead−rod chain with hard-

sphere interactions between nonconnected beads and bending
interactions between adjacent rods. We tie a knot into the
middle of the chain, apply a tension f at the ends, and track the
knot’s motion along the contour as a function of time (Figure
1a). There are three important length scales in this problem: l is
the rod length, b is the bead diameter, and lp is the persistence
length of the chain. We will examine the effect of b and lp on
the dynamics of knot jamming. We anticipate that the excluded
volume effects will become important as the chain segments in
the knot are driven toward each other. In the parlance of
Makarov and co-workers,23,28 the bead size b sets the
corrugation of the energy landscape along the polymer
backbone. We note that this energy landscape is simpler than
the one along a real polymer chain. However, recent
experiments suggest that polymers like actin are corrugated at
the monomer length scale,29 which suggests that our idealized
models may capture the essential physics giving rise to friction.
We also note that several computational studies have observed
jamming using soft bead−bead chains (i.e., b = l), which
indicates that there is a clear interest in understanding knot
jamming via these simple physical models.23,24,27

The details of the Brownian dynamics simulations are listed
in the Supporting Information (SI). We let the polymer chain
be much larger than the jammed knot size (N ≈ 100−300
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compared to Nk ≈ 10−20 beads) so that the knot’s motion is
insensitive to the polymer length and end effects (see SI). Like
in other studies,23 we neglect hydrodynamic interactions
between chain segments and set the drag coefficient on each
bead to be ζ. The length and time scales in which we report our
results will be in terms of the rod length l and the diffusion time
l2ζ/kT. To enforce the excluded volume interactions between
the beads, we apply a stiff, harmonic potential between them
when they overlap. The results we discuss are in the limit when
the spring constant of this potential Hl2/kT is very large,
although we will briefly mention what happens if we make these
potentials softer. We also describe the knot tracking algorithm
in the SI. Briefly, we project the chain onto a plane parallel to
the extension axis and determine the smallest subset of
crossings that retains the chain topology via computation of
the Alexander polynomial, a knot invariant.6,20,30,31 The
resulting statistics of the knotted region (e.g., boundary and
midpoint) are measured in terms of the contour coordinate
along the chain (i.e., chain index).
Figure 1b shows typical trajectories of a knot’s midpoint

along the contour of a flexible polymer chain (i.e., l = 2lp) when
the bead size is equivalent to the rod length (b = l). At low
applied tensions f, the knot traverses the chain in a continuous
fashion, while at larger tensions the knot jams and makes slow,
discrete hops. The dramatic slowdown in the knot’s motion is
readily apparent in these figures. At force f = 5 kT/l, the knot
moves an order of 100 beads in the time of 20 000 rod diffusion
times (l2ζ/kT), while at force f = 25kT/l, the knot travels about

20 times a shorter distance in the same time period. We plotted
the mean-squared displacements for each of these trajectories
and verified that the long-time motion is diffusive (Figure 1c).
Interestingly, we also showed that the discrete hopping motion
follows Poisson statistics, which we illustrate in the SI.
The above results are for a 31 chain topology (Alexander−

Briggs notation).32 How are the transport properties affected by
other knot types? In Figure 2a, we plot the knot diffusivity as a

function of pulling force f for the case of flexible chains (l = 2lp)
and equal bead size to rod length (b = l). The diffusivity
decreases exponentially beyond a critical force f*, and this
trend appears similar for all the topologies studied thus far
the 31, 41, 51, and 52 knots, the ones most common in vitro.33

The dotted line in the figure represents the effective diffusion
constant for a particle in a periodic potential. We do not expect
this theory to quantitatively capture the knot mobility but
rather explain some key trends. When a knot reptates along a
polymer with corrugated short-range interactions, the knot
experiences an energy landscape that is periodic along the chain
contour. We describe the origin of this energy landscape later in
the paper, but for now we say that it is V(x) = 0.5ΔE sin(2πx/
b), where ΔE is the activation energy barrier and b is the bead
size (the corrugation length). With this assumption, the
diffusivity becomes34,35
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Figure 1. (a) Schematic of simulation. (b) Trajectories of a 31 knot for
two different applied tensions. Highlighted curve is a trace from one
run. (c) Mean-squared displacement of a 31 knot. For (b) and (c), the
chain is flexible (l = 2lp), and the bead size is equal to the rod distance
(b = l).

Figure 2. (a) Knot diffusivity vs. applied force for different knot
topologies. The chain is flexible (l = 2lp) with bead size equal to the
rod length (b = l). Dotted line is eq 1 with parameters D0 = 0.12 and
d* = 0.40. (b) Knot diffusivity for a 31 knot when varying the chain’s
persistence length. The bead size here is equal to the rod length (b =
l). (c) Knot diffusivity for a 31 knot as a function of bead size. The
chain is flexible (l = 2lp) for this graph.
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In the above equation, I0(z) is a modified Bessel function, D0
the diffusivity at zero force, and d* the length scale of the
activation barrier. At zero force, the expression goes to a
constant: D → D0. When the force is very large, i.e., fd*/kT ≫
1, the diffusivity exhibits Arrhenius scaling, a.k.a. exponential
decay, regardless of the form of the potential: D → D0
exp(−fd*/kT). We see that this expression does a reasonable
job capturing the trends observed in the simulation. In actuality,
the knot diffusivity is nonmonotonic at low forces as shown by
Huang and Makarov.23 Furthermore, we are unaware of any
experimental or theoretical study in the regime f lp/kT ≪ 1
where the chain is not extended. This regime is conceptually
quite different than what has been examined thus far and would
be interesting to inspect in the future.
The key feature of our findings is that the knot diffusivity

decays exponentially during jamming, and the rate of decay has
a length scale d* that is comparable to the corrugation of the
polymer (d* ≈ 0.40l in Figure 2a). Does this length scale d*
depend on the bending modulus of the polymer chain? In
Figure 2b, we plot the diffusivity of a 31 knot as a function of
force for flexible (l = 2lp) and semiflexible (l = 0.2lp) chains. For
both simulations, the bead size is equal to the rod length (b =
l). We observe that the diffusivity decays exponentially with
increasing force, with the decay rate being indistinguishable as
long as we scale the force by kT/l, a.k.a., the thermal energy
divided by the rod length. Thus, it appears that the bending
modulus of the polymer does not affect the decay rate of the
knot’s diffusivity but instead alters the force f* at which
jamming occurs. In general, stiffer chains require a larger critical
tension f* to overcome the bending penalty for tightening the
knot, which leads to a delayed onset of jamming.
Unlike bending, the excluded volume interactions along the

chain play a large role in modifying the jamming transition as
well as the decay rate of the knot’s diffusivity. Figure 2c plots
the diffusivity of a 31 knot along a flexible chain (l = 2lp) for
three different bead sizes: b = 1.5l (overlapping beads), b = l
(touching beads), and b = 0.8l (nontouching beads). We find
that the critical tension f* is larger for the overlapping bead
case (b = 1.5l) compared to the touching bead case (b = l). The
diffusivity decays more slowly as well. To explain the trend in
f* for these two cases, we note that the excluded volume is
corrugated along the polymer contour with a periodicity equal
to the rod length l. However, the amplitude is smaller for the
overlapping bead case, which results in a lower effective friction
between two chain segments when they slide over each other.
Thus, the polymer with overlapping beads is less likely to jam at
a given tension than the one with touching beads. We can
repeat a similar argument for the case when the beads are
nontouching (b = 0.8l). In this case, segments that slide past
each other can get trapped in the crevices between two beads.
This trapping leads to arrested motion at lower forces, hence a
lower f*.
We explain the trends in the decay rate of the knot’s

diffusivity later. For now, let us examine the reptation moves of
the knot as it traverses the chain. The results shown below are
for the case when the bead size is the same as the rod (b = l). At
high applied tensions f l/kT ≫ 1, we find that each reptation
event consists of one bead propagating through the knotted
core, during which the knot transiently swells by one bead
(Figure 3a). Outside of this event, the knot remains jammed
with a knot size that is fairly constant in time. In Figure 3b, we
see that the time scale of reptation is much smaller than the
typical time τ a knot spends in a jammed state. This observation

indicates that the first step of reptationi.e., the process by
which a bead enters the knotted coreis the rate-limiting step
for the knot’s motion. If we fit the knot’s trajectory to a piece-
wise constant function36 (binning over a time larger than the
reptation time of a knot), we can extract a dwell time
distribution for the knot position as shown in Figure 3c. Using
Kramers theory of activated processes,37 the average caging
time of the knot follows the scaling

τ ∼ ΔE kTexp( / ) (2)

where ΔE is the activation barrier for the first step of reptation
(ΔE/kT ≫ 1). Thus, if we plot the average caging time versus
applied force on a log scale, we determine how the activation
barrier scales with this parameter (Figure 3c). We find that the
activation energy scales linearly with force at large forces: ΔE ∼
fd**, f l/kT ≫ 1. Furthermore, we find that the length scale of
this barrier matches to the length scale for the decay of
diffusivity mentioned earlier: d** ≈ d*. This suggests that the
first step of reptation is the dominant contribution to the
energy landscape of the knot’s motion.
This result may explain why the knot diffusivities appear to

be relatively insensitive to chain topology, at least for the simple
knot types examined thus far (31, 41, 51, and 52) (Figure 2a).
The first reptation move is similar for these knot types, and
hence the scaling for diffusivity vs. force should be similar as
well. Of course, we expect this universality will break down for
knots with an extremely large number of crossings, where the
energy landscape will be much more complex. In this situation,
the first step in reptation will no longer be rate-limiting, and the

Figure 3. (a) Reptation schematic. The beads are drawn small for
illustration purposes. (b) Left: knot position vs. time for a 31 knot on a
flexible chain ( f = 23kT/l, l = 2lp). We also plot a piecewise constant fit
to the trajectory. Right: if we zoom into a hop, we see that the knot
size swells by one bead during reptation. (c) Left: dwell time
distribution of knot position for a 31 knot. f = 23kT/l, l = 2lp. Right:
Average dwell time vs. applied force for a 31 knot. The slope gives the
length scale of the activation barrier for reptation. We plot for both
flexible (l = 2lp) and semiflexible (l = 0.2lp) chains. For all plots shown
here, the bead size is equivalent to the rod length (b = l).
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knot’s dynamics will be dominated by the details of how the
contour snakes through the interior of the knot.
In the above point, we note that the energy landscape of the

knot may change considerably if the knot spends a significant
amount of time in the swollen phase during reptationin other
words, the propagation of chain through the knotted core is
sluggish. A natural question to ask then is if the softness of the
excluded volume interactions alters this effect. We examine this
idea in the SI. We find that by making the harmonic potential
between the beads become softer we can lengthen the time the
knot spends in reptation. Since very little is known about this
field, a more systematic study of the effects of chain softness
merits examination for the future.
In the last part of this paper, we provide an argument to

explain the relative trends on how the excluded volume alters
the decay rate in the knot diffusivity. Our argument involves
estimating the relative activation energy barriers for the
reptation process. In Figure 4a, we show snapshots of a highly

tensed, 31 knot with three different bead sizes: b = 1.5l
(overlapping beads), b = 1.0l (touching beads), and b = 0.8l
(nontouching beads). To a first approximation, the activation
barrier for a bead entering the knotted region scales as ΔE ∼
NringΔEslide, where ΔEslide is the energy barrier for two segments
to slide past each other, and Nring is the number of segment
pairs that participate in this motion, which is roughly equal to
the ring size of the knotted entrance (Nring ≈ 4 for b = 0.8l, 6
for b = 1.0l, and 9 for b = 1.5l). To get an estimate for ΔEslide,
we examine the motion of a bead−rod chain under a uniform
tension f sliding over another fixed chain (Figure 4b). The top
chain initially rests between the crevices of the bottom chain,
and we determine how much the top chain must bend for its
middle to lie completely above the lower chain. In the limit of
large tension ( f l/kT ≫ 1) and small vertical displacements
(Δz/l ≪ 1), the energy penalty for this motion scales as ΔEslide
∼ fΔz2/l, where l is the rod length. We calculated Δz2 for the
three different bead sizes in the SI, which yields Δz2 = 0.0627l2

for b = 0.8l, 0.0252l2 for b = l, and 0.0083l2 for b = 1.5l. Notice
that the rougher the polymer surface, the larger the
displacement Δz needed for sliding to occur. Combining all
these results gives the total activation barrier ΔE ∼ NringΔz2f/l.

Taking the ratio of the barriers for the three cases listed above,
we obtain ΔE[b = 1.5l]/ΔE[b = l] = 0.49 and ΔE[b = 0.8l]/
ΔE[b = l] = 1.7, which compares reasonably to the relative
decay rates r* = −d(log D)/df of the knot diffusivities: r*[b =
1.5l]/r*[b = l] = 0.65 and r*[b = 0.8l]/r*[b = l] = 1.5 (see
Figure 2c). Of course, these crude estimates neglect several
effects such as how the chain connectivity in the knotted
entrance alters the sliding energy ΔEslide. We do not expect
quantitative agreement but rather hope that this analysis
provides insight into the factors that contribute to the reptation
activation barrier.
In this study, we examined the motion of a knot along a

tensioned chain, surveying the role that bending, knot topology
and excluded volume plays in this process. The knot
dynamically arrests above a critical tension, beyond which the
knot’s diffusivity decays exponentially. We note that the physics
described here is analogous to the glassy dynamics in colloidal
systems,38,39 where particles get “caged” at short times but
escape this cage by rearranging its microstructure.40 It would be
fascinating to study the relaxation of a jammed knot to see if
glassy effects such as aging occur in these systems. Similarly, it
would be interesting to explore the effects of chain attraction on
jamming, as it has been shown that attractive potentials alter
the physics of the glass transition considerably.39,41 We note
that this work gives insight into how friction between
entanglements is modified by a corrugated energy landscape
along the polymer backbone. This idea could be important in
developing more accurate entanglement models or augment
existing theories such as the “tube” models from Edwards and
DeGennes.42,43 This work may also be amenable to study
macroscopic, granular chains, where there has been recent
interest in understanding knotting effects.44,45 Lastly, after
initial submission of this work, Micheletti and co-workers
quantified how the topology of knots alters their mobility when
jamming at a nanopore.27 We note that in this high force
regime friction is highly nonlinear and thus sensitive to the
configuration of the chain. It is likely that chain asymmetries
from the nanopore could give rise to different trends in the
knot mobility as a function of chain topology. This topic would
be interesting to examine in the future.
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Figure 4. (a) Snapshots of a 31 knot with different bead sizes. (b) A
tensed, bead−rod chain sliding over another chain. We compute the
displacement Δz the top chain must make in order to move over the
second chain via bending.
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