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Frictional forces affect the rheology of hard-sphere colloids, at high shear rate. Here we demonstrate, via
numerical simulations, that they also affect the dynamics of active Brownian particles and their motility-induced
phase separation. Frictional forces increase the angular diffusivity of the particles, in the dilute phase, and prevent
colliding particles from resolving their collision by sliding one past to the other. This leads to qualitatively
changes of motility-induced phase diagram in the volume-fraction motility plane. While frictionless systems
become unstable towards phase separation as the motility increases only if their volume fraction overcomes
a threshold, frictional systems become unstable regardless of their volume fraction. These results suggest the
possibility of controlling the motility-induced phase diagram by tuning the roughness of the particles.
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I. INTRODUCTION

The interaction force between macroscopic objects in
direct physical contact has a frictional component. In col-
loidal hard-sphere suspensions, direct interparticle contacts
are generally suppressed by frictionless repulsive forces, of
electrostatic or polymeric origin, which are needed to stabilize
the suspension, as well as by lubrication forces [1]. Hence,
in these systems, frictional forces are generally negligible.
Recent results [2–5] have, however, shown that in colloidal
systems under shear, frictional force might become relevant.
This occurs as the relative velocity between contacting par-
ticles is of order σ γ̇ , with σ particle diameter and γ̇ the
shear rate. At large enough γ̇ , colliding particles become able
to overcome their lubrication interaction, entering into direct
physical contact. The resulting frictional forces are believed
to trigger the discontinuous shear thickening [2–5] phe-
nomenology, an abrupt increase of the shear viscosity with the
shear rate.

In systems of self-propelled colloidal particles the rela-
tive velocity between colliding particles could also be high.
Therefore, frictional forces could play a role in these systems
by affecting their distinguishing feature, which is a motility-
induced phase separation (MIPS) from a homogeneous state,
to one in which a high-density liquidlike state coexists with
a low-density gaslike state. While the physical origin and the
features of this transition have been extensively investigated in
the last few years, in both numerical model systems [6–8] as
well as experimental realizations [9–12], the role of frictional
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forces causing colliding particles to exert torques on each
other has been ignored.

In this paper, we investigate the effect of frictional forces
on the motility-induced phase separation of active spherical
Brownian particles (ABPs), a prototypical active matter sys-
tem. In this model, hard-sphere-like particles of diameter σ

are equipped with a polarity n along which they self-propel
with active velocity va. The self-propelling directions change
as n undergo rotational Brownian motion, with rotational dif-
fusion coefficient Dr . Thermal noise also acts on the positional
degree of freedom. The motility-induced phase separation of
this model is controlled by two variables, the volume fraction,
φ, and the Péclet number, Pe ≡ va/(Drσ ). Here we show
that friction qualitatively affects the dynamical properties of
ABPs, in the homogeneous phase, by enhancing the rotational
diffusion while suppressing the translational one. Because of
this, friction qualitative changes the spinodal line marking
the limit of stability of the homogeneous phase in the φ-Pe
plane, at high Pe. While in the absence of friction [13] the
low-density spinodal line diverges at a finite volume fraction
φm > 0, in the presence of friction it diverges at φm → 0. In
this respect, friction makes the motility-induced phase dia-
gram of ABPs closer to that observed in most active particle
systems, including dumbbells [14,15] and schematic models
such as run-and-tumble particles [13], active OrnsteinUhlen-
beck [16], and Monte Carlo models [17], and also closer to
gas-liquid transition phase diagram in passive systems. Since
the frictional interaction between colloidal scale particles can
be experimentally tuned [4], our result indicates that it is pos-
sible to experimentally modulate the motility-induced phase
diagram by optimising the particle roughness.

The paper is organized as follows. After describing our
model in Sec. II, we compare in Sec. III the frictionless and
the frictional dynamics, in the homogeneous phase, showing
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that friction suppresses the translational diffusivity while it
enhances the rotational one. The friction dependence of the
motility-induced phase diagram is discussed in Sec. IV. Sec-
tion V discusses the dynamics in the phase-separated region
and highlights how friction promotes the stability of active
clusters and hence promotes separation.

II. NUMERICAL MODEL

We consider two- and three-dimensional suspensions of
active spherical Brownian particles (ABPs) with average
diameter σ (polydispersity: 2.89%) and mass m, in the over-
damped limit. The equations of motion for the translational
and the rotational velocities are

vi = F i

γ
+ Fa

γ
n̂i +

√
2D0

t η
t
i , (1)

ωi = T i

γr
+

√
2D0

r η
r
i . (2)

Here D0
r and D0

t = D0
r σ

2/3 are the rotational and the transla-
tional diffusion coefficients, γ is the viscosity, γr = γ σ 2

3 , η is
Gaussian white noise variable with 〈η〉 = 0 and 〈η(t )η(t ′)〉 =
δ(t − t ′), Fa is the magnitude of the active force acting on
the particle and n̂i its direction, and F i =

∑
F i j and T i =

σi
2

∑
(r̂i j × F i j ) are the forces and the torques arising from

the interparticle interactions. In the absence of interaction and
noise, particles move with velocity va = Fa/γ and do not
rotate.

We use an interparticle interaction model borrowed from
the granular community, to model frictional particles. The
interaction force has a normal and a tangential component,
F i j = f n

i j + f t
i j . The normal interaction is a purely repul-

sive Harmonic interaction, f n
i j = kn(σi j − ri j )�(σi j − ri j )r̂i j ,

�(x) is the Heaviside function, σi j = (1/2)(σi + σ j ), ri j =
ri − r j , and ri is the position of particle i. The tangential force
is f t

i j = kt �ξi j , where ξi j is the shear displacement, defined as
the integral of the relative velocity of the interacting particle
at the contact point throughout the contact, and kt = 2

7 kn.
In addition, the magnitude of tangential force is bounded
according to Coulomb’s condition: | f t

i j | � μ| f n
i j |. Working

in the overdamped limit, we neglect any viscous dissipation
in the interparticle interaction. In the granular model, we
also neglect the presence of rolling friction [18] we expect
not to qualitatively affect our results, in analogy with recent
findings [19] on the role of rolling friction on discontinu-
ous shear thickening. The value of kn is chosen to work in
the hard-sphere limit, the maximum deformation of a par-
ticle being of order δ/σ � 5 × 10−4. We simulate systems
with N = 104, unless otherwise stated, in the overdamped
limit, with integration time step 2 × 10−8/D0

r , using periodic
boundary conditions. We have checked that for the considered
value of N finite-size effects are negligible away from the
critical point, in the range of parameters we consider. Data
are collected after allowing the system to reach a steady-state
via simulation lasting at least 2τ , where τ is the time at which
the diffusive regime is attained we estimate from the study of
the mean-square displacement.

μ=0

μ=1

FIG. 1. Time evolution of the positions and of the self-propelling
directions of two colliding particles, for frictionless (top row) and for
frictional (bottom rows) particles. Time evolves from left to right and
from top to bottom. In the time interval between consecutive images
a free particle moves one diameter. In these simulations, we neglect
both translational and rotational noise.

III. DYNAMICS IN THE HOMOGENEOUS PHASE

A. Frictional effect on the interparticle collision

To appreciate the role of friction on the properties of ABPs,
we start considering how friction affects the collision between
two particles. The interparticle force acting between two col-
liding particles generally has a component parallel to the line
joining the centers of the two particles and a tangential com-
ponent. In the absence of friction, this tangential component
allows the particles to slide one past the other to resolve their
collision, as illustrated in the upper row of Fig. 1.

In the presence of friction, particles are not free to tan-
gentially slide one past the other. Specifically, the tangential
shearing-induced an opposing frictional force that slows down
the motion of the particles, and it induces their rotation. In
the absence of thermal forces, or equivalently in the Pe → ∞
limit, the frictional forces cause the particles to rigidly rotate
around their contact point, so that they never resolve their
collision, as is illustrated in the bottom rows of Fig. 1. At
any finite Pe, the stochastic forces acting on the particles will
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FIG. 2. Mean-square displacement (a) for the frictionless (μ =
0, full lines) and the frictional dynamics (μ = 0.9, symbols) for
selected values of the Péclet number. At large Pe friction reduces
the time at which the dynamics enter the asymptotic diffusive regime
and hence suppresses the diffusion coefficient (b). The mean-square
angular displacement (c) is enhanced by the frictional force, at times
larger than the interparticle collision time. This leads to an increase
of the rotational diffusivity (d) scaling as μ2Pex , with x 	 3.5. Lines
in panel (b) are one-parameter fits to the theoretical prediction of
Eq. (4) where x = 3.5 is held constant. In all panels, φ = 0.1.

be able to break their contact and hence the frictional forces,
allowing the particles to resolve their collision. We do expect,
therefore, that friction may affect the physics of ABP at high
Pe, inducing a non-negligible rotation of the self-propelling
directions of colliding particles.

B. Dilute phase

We start describing the effect of friction on the MIPS, com-
paring the dynamics of frictionless and frictional systems in
the homogeneous phase. Figure 2(a) illustrates the frictionless
and the frictional mean-square displacement, at different Pé-
clet numbers, for volume fractions in the gas phase. In the ab-
sence of friction (full lines) the mean-square displacement ex-
hibits a crossovers from a diffusive to a superdiffusive regime
at t 	 6D0

t /v
2
a , and from the superdiffusive to the asymp-

totic diffusive regime at t = 1/D0
r [6]. In the presence of

friction (symbols), similar behavior is observed, but the
system enters the diffusive regime on a smaller timescale.
Consequently, the translational diffusivity is also reduced as
illustrated in Fig. 2(b). This finding is rationalized investigat-
ing the mean-square angular displacement [Fig. 2(c)] and the
dependence of the rotational diffusivity Dr on Pe [Fig. 2(d)].
Indeed, these quantities clarify that friction enhances the rota-
tional diffusion of the particles, hence reducing the timescale

at which the system enters the asymptotic translational diffu-
sive regime.

We rationalize how friction leads to an increase of the
rotational diffusivity, considering that in a collision a fric-
tional particle experiences a torque, which induces the rotation
of its self-propelling direction. More quantitatively, in the
overdamped limit, the rotation 
θi induced by a collision is
proportional to the induced torque and the duration of the
contact. If the contacts are at their critical Coulomb value,
the typical torque magnitude is σ f t ∝ μ f n ∝ μPe, and the
mean-squared angular displacement induced by a collision
of duration tcoll is 〈
θ2

i 〉 ∝ μ2Pe2t2
coll. At low density con-

secutive torques experienced by a particle are uncorrelated,
and the number of collisions per unit time is proportional to
Pe. Hence, assuming tcoll ∝ Peq, we predict for the rotational
diffusivity

Dr (Pe, μ) = D0
r + αμ2Pex (3)

with x = 3 + 2q. Our numerical results of Fig. 2(d) indicate
x 	 3.5. These results indicate that the average duration of an
interparticle collision slightly grows with the Péclet number,
tcoll ∝ Pe1/4. We qualitatively rationalize the dependence of
the collision duration on the Péclet number considering that
Pe controls the ratio between the frictional forces, which
protract the duration of contacts, and the thermal ones, which
eventually allow particles to resolve their collision. We have
indeed observed in Fig. 1 that in the Pe → ∞ limit collisions
are not resolved, so that tcoll = ∞.

The dependence of the rotational diffusion coefficient on
Pe and on μ allows us also to rationalize the nonmonotonic
behavior of the diffusivity observed in Fig. 2(b). Indeed, in
the φ → 0 limit the long-time mean-square displacement of

an active particle is 
r2(t ) = 6D0
t t + v2

a
Dr

t . At a small but finite
density φ, we therefore expect

D(Pe, μ) = c(φ)

[
D0

t + σ 2

6

(D0
r )2

Dr (Pe, μ)
Pe2

]
(4)

with c(φ) a constant of order one, Dr (Pe, μ) is given by
Eq. (3). Equation (4) well describes the data of Fig. 2(b), with
c(φ = 0.1) 	 0.8. Hence, the diffusivity grows as Pe2 at small
Pe, and decreases as Pe2−x at large Pe.

IV. FRICTIONAL MIPS

We have investigated the motility phase diagram as a func-
tion of the friction coefficient μ, of the volume fraction φ,
and of the Péclet number Pe ≡vaτB/σ , where va is the particle
velocity in the φ → 0 limit, σ is the average particle diameter,
and τB = 1/D0

r is the Brownian time, D0
r being the rotational

diffusion coefficient of the self-propelling directions in the
absence of friction. We have determined the phase diagram
considering the systems to be phase separated when the dis-
tribution of the local density exhibits two peaks, at the end
of relative short simulations. Indeed, this ensures that phase
separation has occurred via spinodal decomposition, rather
than via nucleation, as we previously verified [20]. We discuss
here results obtained in three spatial dimensions.

In the absence of friction, our results are in qualitative
agreement with previous investigations. The increase of the
Péclet number drives the phase separation of the system, but
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FIG. 3. The phase diagrams of frictionless (circles) and of fric-
tional (triangles) ABPs are compared in (a). The full line, a parabola,
is the theoretical prediction of Ref. [20], for frictionless systems. At
high Pe the low-density critical line saturates to a constant value in
the absence of friction, while it vanishes in the frictional case. This
occurs for all values of the friction coefficient, as shown in panel
(b). At a given Pe, the critical volume fraction at which phase sep-
aration occurs varies with friction as φs(μ) = φs(∞) + 
φse−μ/μc .
For Pe = 103 (c) we find φs(∞) = 0.085(3), 
φs = 0.26(2), and
μc = 0.32(1).

only for volume fractions above a critical value [7,21–23], as
illustrated in Fig. 3(a) (circles).

We highlight how friction influences this scenario by also
illustrating in Fig. 3(a) the spinodal line for μ = 0.9 (trian-
gles). The figure reveals that friction does not appreciably
influence the high-density spinodal line, while it strongly af-
fects the low-density line does. In particular, while φs(Pe, μ =
0) reaches a plateau as Pe increases, φs(Pe, 0) monoton-
ically decreases with Pe. A similar effect of friction has
been reported on the volume fraction of static granular pack-
ing [24,25]. Hence, the effect of friction becomes more
relevant on increasing Pe, as we anticipated in Sec. III A.

Figure 3(b) further investigates this dependence illustrat-
ing the low-density spinodal line for different values of the
friction coefficient. Regardless of the μ value, the spinodal
line decreases on increasing Pe or μ. Figure 3(c) illustrates
the value of the lower-spinodal line, at Pe = 103, as a func-
tion of μ. The figure reveals that this value exponentially
decreases with μ, approaching a limiting value. This exponen-
tial dependence is rationalized considering that the frictional
forces, whose magnitude scale as μva ∝ μPe, can be dis-
rupted by thermal forces that have a constant magnitude
through an activated process. Since the associated Boltzmann
factor exp (−μPe) vanishes in the Pe → ∞ limit, so thus the
spinodal line, for μ > 0. Hence, the frictionless case appears
as a singular one.
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FIG. 4. Friction leads to an increase of the rotational diffusivity
scaling as Dr (Pe, μ) − Dr (Pe, 0) ∝ Pe∗ ∝ μ−4/7 (a). The difference
between the frictionless and the frictional low-density critical lines
[see Fig. 3(b)] is also controlled by Pe∗ (b).

To quantitatively rationalize the interplay between friction
and Péclet number, we consider that according to Eq. (3)
frictional forces play a role for Pe > Pe∗ ∝ μ−4/7, as found
imposing μ(Pe∗)x ∝ D0

r . Indeed, we show in Fig. 4(a) that,
when plotted versus Pe/Pe∗, rotational diffusivity data corre-
sponding to different values of the friction coefficient nicely
collapse. Accordingly, the frictional critical line φc(Pe, μ)
coincides with the frictionless one for Pe < Pe∗(μ), while
conversely it deviates from it. We confirm this expectation in
Fig. 4(b), which illustrates that the distance between the fric-
tionless and the frictional critical lines, φ(Pe, 0) − φc(Pe, μ),
scales as Pe/Pe∗(μ).

V. DYNAMICS IN THE PHASE SEPARATED PHASE

Friction significantly stabilizes phase-separated configu-
rations, thus expanding the coexistence region in the φ-Pe
plane. To understand how friction stabilized an active cluster,
we start by considering a frictional simulation for parameter
values at which phase separation occurs, Pe = 500, φ = 0.2,
and μ = 0.9. Also, for ease of visualization, we consider a
small two-dimensional system, with N = 500 particles, so
that in the steady state we readily observe the formation of
a single cluster. This is illustrated in Fig. 5(a). In this and the
other panels of Fig. 5, we also illustrate the active velocity
field evaluated on a square grid with lattice spacing ∼1.5σ .
We associate to each grid point the average active velocity of
the particles in a circle of radius 	2.2σ . In the figure, we show
the values of the field on the grid points that average over at
least five particles. We use the configuration Fig. 5(a) as the
initial configuration of two different simulations, a frictionless
(μ = 0) and a frictional one (μ = 0.9).
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FIG. 5. Evolution of a two-dimensional cluster of ABPs in the absence (a–c) and in the presence (a, d, e) of frictional forces. The red
arrows show the active force field (see Methods). In all plots, the central black circle identifies the position of the particle closer to the center
of mass of the cluster, in the initial configuration. We emphasize the rotational motion of the cluster, drawing a line connecting the central
particle and another particle of the cluster. Both with and without friction the cluster rigidly rotates around its center of mass. In the absence
of friction, the rotation of the cluster makes the active velocities parallel to the cluster surface (b) inducing a cluster instability (c). We see
in panel (f) that, in the absence of friction, as the cluster rotates, the average interaction force that contrasts the motion along the direction
of the self-propelling forces decreases, fluctuating around a value characteristic of the homogeneous phase once the cluster breaks. In the
presence of friction, the cluster rotation induces that of the self-propelling directions, and the cluster remains stable (d, e). For these illustrative
two-dimensional simulations N = 500, Pe = 500, φ = 0.2, and μ = 0.0, 0.9.

Figures 5(a)–5(c) show that in the absence of friction the
cluster becomes unstable and disintegrates upon rotation. The
instability occurs as the rotation makes the self-propelling
velocities tangential to the cluster surface. We have verified
that the system becomes macroscopically unstable by investi-
gating the magnitude of the forces which oppose the motion
of the particles in their self-propelling directions F (t ) =
− 1

NFa

d
dα

U (r(t ) + αn̂)|0, where U is the elastic energy of the
system and n̂ is the director of the active velocity field, nor-
malized by the magnitude Fa of the active force acting on each
particle and by the number of particles N . Figure 5(f) shows
that F (t ) quickly decreases as the cluster rotates, reflecting
the development of the instability.

Friction promotes phase separation by suppressing this
rotational-induced instability of active clusters. This is il-
lustrated in Figs. 5(a), 5(d), and 5(e). The frictional cluster
is stable because its rotation induces that of the self-
propelling directions of its particles. Indeed, we observe in

Figs. 5(a), 5(d), and 5(e) the active velocities always point
towards the center of the cluster. This tendency is more pro-
nounced the higher the frictional forces, and hence at large μ

and large Pe. As a consequence of this process, while in the
absence of friction active clusters quickly disintegrate as they
start rotating, in frictional ABPs one observes long-lasting
active clusters that perform many revolutions before eventu-
ally breaking apart. In this respect, frictional ABPs behave as
active dumbbells [14,15].

From the decay of F (t ) it is possible to extract the life-
time of the considered cluster. For the cluster illustrated in
Fig. 5, This lifetime is 	 0.12D0

r in the absence of friction,
as apparent from Fig. 5(f). For this cluster, we have observed
the lifetime quickly grow as the friction coefficient increases,
reaching values beyond our simulation capabilities for μ 	
0.2. This result strongly suggests that frictional clusters break
as thermal fluctuations succeed in inducing the relative rota-
tion of the contacting cluster.
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VI. DISCUSSION

We have investigated the stability phase diagram of fric-
tionless active Brownian particles and rationalized its spinodal
line within a kinetic model. In this model, the finite value
of the lower-spinodal line in the Pe limit, in the absence of
friction, results from the competition of two processes. Phase
separation is promoted by the collisions of the particles in the
homogeneous phase, which may trigger the agglomeration.
Being related to the particle velocity, this process leads to a
flux of particles jg ∝ Pe from the dilute to the dense phase.
The dilute phase is promoted by the process that allows par-
ticles to resolve their collisions. At low Pe, particles mainly
resolve their collision by rotating their self-propelling direc-
tion. In the high-Pe limit we are interested in, conversely,
particles resolve their collisions by sliding past one to the
other, as illustrated in Fig. 1, before their self-propelling direc-
tion changes. This sliding-detaching mechanisms, also driven
by the motility, leads to a flux of particles from the dense
to the less-dense phase, jsd ∝ Pe. Since both jg and jsd are
proportional to the Péclet number, the spinodal line results
tend not to depend on it.

Within this context, the role of friction is rationalized con-
sidering its influence on these contrasting fluxes. In Sec. III B
we demonstrated that friction influences the homogeneous
phase by increasing the rotational diffusivity. This increase
does not affect the typical velocity of the particles and hence
the flux jg. On the other hand, we have found friction to
have suppressed the ability of two particles to slide one past
the other, to resolve their collision, in Sec. III A. Similarly, in
the phase-separated phase, friction stabilizes an active cluster,
which would conversely disintegrate upon rotation, as dis-
cussed in Sec. V. The balance between jg and jsd , therefore,
leads to a friction-dependent spinodal line with the coexis-
tence region widening on increasing the friction coefficient.

That the suppression of the sliding detaching mechanism
leads to a widening of the coexistence region is consistent with

previous findings. In the context of frictionless spherical par-
ticles, the sliding detaching mechanisms are suppressed when
the dynamics is investigated via Monte Carlo simulations,
which are unable to account for the cooperative displacement
of colliding particles. Consistently, in these simulations the
spinodal line is found to vanish in the Pe → ∞ limit [16,17].
The sliding detaching mechanisms are also suppressed in
the system of active anisotropic particles. Indeed, these par-
ticles cannot rotate independently when in a dense cluster,
which implies that an active cluster of anisotropic particles
does not destabilize when rotating, as in frictional spherical
particles (see Fig. 5). Consistently, the spinodal line of fric-
tionless dumbbells does also vanish [14,15] in the Pe → ∞
limit.

Interestingly, we notice that long-lived rotating clusters
have also been observed in experiments of active ther-
mophoretic particles [9–11]. These clusters might perform
several revolutions before restructuring. While it is under-
stood that these clusters might be stabilized by the attractive
phoretic attraction between the particles [10,11,26], it has
been suggested that this attraction is not always present [9]. In
these circumstances, friction might be a concurring stabilizing
factor, as one could experimentally ascertain investigating
whether the self-propelling directions of the particles rotate
with the cluster itself.

Regardless, frictional forces could be enhanced by acting
on the roughness of the particles [4], suggesting that friction
could be used as a control parameter to experimentally tune
the motility-induced phase diagram.
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