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ABSTRACT: Knots occur frequently in our daily life and also
in long polymers. Studies of spontaneously occurring knots in
a linear polymer have focused on their size and probabilities. In
this work, we report counterintuitive phenomena about knot
sizes and explain them by an analytic theory. Our simulations
show that short-range intrachain attractions (repulsions) lead
to shrinking (swelling) of knot sizes, trends which follow
intuition. However, long-range attractions (repulsions) surpris-
ingly lead to swelling (shrinking) of knot sizes. Such
counterintuitive trends are because larger knots contain
more interacting monomer pairs if the interaction range is larger than a critical value. The critical interaction range varies
from a fraction of to multiple persistence lengths, and so the long-range interaction regime can be reached for DNA, peptide
chains, or synthetic polymers under depletion attractions induced by colloids (e.g., proteins) or via Coulomb repulsions. Our
results suggest that probabilities and sizes of knots can be controlled independently through adjusting the range and the strength
of intrachain interactions.

1. INTRODUCTION
We encounter knots in our daily life,1,2 such as in computer
cables or shoelaces. Knots also occur in biopolymers, for
example in proteins or DNA.3−5 The knotting probability of a
few kilobase DNA, such as that of a viral genome, is a few
percent.6,7 There are seven natively knotted structures
identified from 2936 nonhomology proteins in the protein
structure database.8 Generally, the knotting probability
approaches unity as the contour length of a polymer increases.
The formation of knots leads to significant consequences, such
as jamming polymer translocation through a nanopore9−11

(relevant to the ejection of DNA from viral capsids12), reducing
mechanical strengths of polymers,13 slowing down the coil−
stretch transition,14 and affecting chain dynamics.15 The
knotting in some protein structures may have biological
implications.3,4,16 The investigation of knots under various
conditions as well as how to produce knots has been performed
in many simulations17−24 and experiments.25,26

There has been little effort devoted to rational controlling of
knot properties, such as knotting probability, knot type, knot
size, or location of a knot in a chain. In practical applications,
one may want to either eliminate or promote knotting in a
polymer. For example, knots can decrease resolution when
sequencing DNA via linearization in nanofluidic channels.27,28

Coluzza et al. designed knots in a polymer through the
sequence of patches for the application of drug delivery.23 Very
recently, Polles et al. also designed knots by patchy templates.29

In this work, we control knots through intrachain
interactions. We address a basic question: how do intrachain
interactions affect the knotting probability and the knot size in

a homopolymer? At first glance, one expects that intrachain
repulsions (or attractions) would swell (or shrink) knot sizes.
However, our simulations show that the effect of intrachain
interaction on the knot size surprisingly becomes opposite as the
interaction range becomes larger than a critical value. Such
unexpected behaviors of knot size induced by intrachain
interactions can explain intriguing phenomena reported in two
previous simulation studies: (i) Dommersnes et al.30 found that
Coulomb repulsions lead to the shrinking of knot size; (ii)
D’Adamo and Micheletti found that depletion attractions by
large crowders swell knots.31 However, these two studies did
not reveal the universality of such unexpected behaviors and did
not analyze the conditions under which the unexpected
behaviors occur. Since the second study31 focuses on the
crowding effects on knots, the authors did not link the swelling
of knots by attraction to the shrinking of knots by repulsion.30

In the current study, we systematically investigate these
unexpected behaviors and also explain them by a simple
theory. Previously, Dommersnes et al. suggests that Coulomb
repulsions tend to swell the overall chain conformation and
thus effectively tighten a knot. However, as we will discuss at
the end of section 3.4, the repulsion-induced knot tightening in
our current study is caused by a mechanism other than the
swelling of the entire conformation. We will show that short-
range repulsions can swell the overall chain conformation but
cannot tighten a knot.
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In the current study, we investigate the effects of intrachain
interactions on the knot size and knotting probability, with the
focus on the aforementioned unexpected behaviors (knot
tightening by repulsions). We also develop a theory to explain
the unexpected behaviors.

2. SIMULATION AND THEORY
2.1. Simulation of Polymer Chains. We perform PERM

(Pruned-Enriched Rosenbluth Method) simulations32,33 to
generate random conformations for linear semiflexible chains
(not circular chains). We then determine the sizes and
probabilities of knots using the method in our previous
studies.34−36 The semiflexible chain is modeled as a string of
touching beads37 (Figure 1a). The number of beads is 2000.

Bending energies are applied for three adjacent beads to
reproduce a persistence length Lp. The pairwise interaction
between beads are described as a hard-core repulsion plus
either a square potential or a triangle potential. We choose
these two simple potentials to speed up simulations as well as
for the convenience in theoretical analysis. The square potential
is widely used in the modeling of soft matter systems, e.g., hard
spheres and polymers. The triangle potential is similar to the
depletion potential induced by crowding. The diameter of hard-
core a is set as (1/20)Lp unless otherwise specified, so that the
parameters are relevant to DNA, which has a persistence length
Lp ≈ 50 nm and a hard-core diameter a = 2.5 nm. The depth of
the interaction potential at r = a is described by the parameter
ϵ.
2.2. Calculation of Knot Sizes. The topology is

determined by computing the Alexander polynomial of the
chain38 after closing both ends by a loop based on the
minimally interfering closure scheme.39 The knot core is
determined by cutting beads from ends until the topology is
changed.
2.3. Theory of Knots in Semiflexible Chains. As

proposed by Grosberg and Rabin40 and validated by our

previous simulation,34 the knot formation in a wormlike chain
has two contributions in the free energy:

= +−F L L L L17.06( / ) 1.86( / )knot
wlc

knot p
1

knot p
1/3

(1)

where Lknot is the contour length inside the knot core, Lp is the
persistence length, and the free energy is in units of thermal
energy kBT hereafter. The first term is the bending energy, and
the second term is the confinement free energy due to the
subchain in the knot core being confined in a virtual tube
(Figure 1a,b). The two prefactors were determined in our prior
simulations.34 The bending energy, scaling as Lknot

−1, tends to
swell a knot, while the confinement free energy, scaling as
Lknot

1/3, tends to shrink a knot. The competition of these two
energies leads a metastable knot size, corresponding to the free
energy minimum.
When taking into account the excluded volume interaction

caused by the hard-core diameter of the chain, the free energy
of knot formation becomes34
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where the numerical coefficient 16 in the second term was
previously determined by simulations.34

3. RESULTS AND DISCUSSION
3.1. Simulation Results Using Square Potentials.

Figure 2 shows the probability of forming a trefoil knot as a

function of the rescaled knot size obtained from simulations
using square potentials. The contour length is L = 100Lp,
corresponding to approximately 5 μm DNA. The probability
f knot(x) is normalized such that ∫ 0

L/Lpf knot(x) dx = f total, where x
= Lknot/Lp and f total is the total probability of forming trefoil
knots. For both Rint, attractions (repulsions) always increase
(decrease) knotting probabilities. However, the metastable knot
size Lknot* (peak location) exhibits opposite trends for these two

Figure 1. (a) A trefoil knot in a chain. The monomers in the knotted
region are marked in red. The gray tube is a virtual tube, in which the
red monomers are confined. (b) A chain is confined in a tube. (c) The
cross section of the virtual tube. (d) A square/triangle potential is used
for intrachain interaction. Positive (negative) values of ϵ correspond to
repulsions (attractions).

Figure 2. Probability of trefoil knots as a function of knot size in
simulations of linear chains using square potentials. The range of
intrachain interaction is Rint = 0.2Lp (top) and Rint = 2Lp (bottom).
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Rint. The attractions with Rint = 0.2Lp lead to shrinking of knots,
while the attractions with Rint = 2Lp surprisingly lead to swelling
of knots. The reason why small absolute values of ϵ lead to
substantial changes in knotting properties is that ϵ is defined for
a pair of monomers. If we convert the interaction strength to
that for a pair of persistence-length segments, the interaction
strength is comparable to kBT. Similar trends are observed for
flexible chains and other knot types (see Supporting
Information).
Figure 3 shows the total probability of forming trefoil knots

as a function of the strength of interaction. Note that topology

(knot) is strictly defined for circular chains but not for linear
chains. A knot in a linear chain can be easily distinguished from
unknots if the knot core is localized in a small portion of the
chain. Uncertainty in the identification of a knot increases when
the knot contains nearly the entire contour length. Such
uncertainty disappears as Lknot becomes less than L/2. As a
result, in the calculation of knotting probability, we separately
consider all trefoil knots or only the trefoil knots with Lknot ≤
L/2. The effect of intrachain interactions on total knotting
probability can be understood by the fact that knot formation
leads to more interacting pairs of monomers in the knot core.
3.2. Simulation Results Using Triangle Potentials.

Figure 4 shows similar results to Figure 2, except that triangle
potentials are used in the simulations. The trends are the same
with both type of potentials. In the case of Rint = 0.2Lp,
attractions/repulsions lead to shrinking/swelling of knots. In
the case of Rint = 2Lp, attractions/repulsions lead to opposite
trends. The Supporting Information includes the results for Rint
= 0.5Lp, exhibiting the same trend as Rint = 0.2Lp, and the
results Rint = Lp, where the metastable knot size is insensitive to
attractions and repulsions.

3.3. Metastable Knot Sizes. Figure 5 shows the metastable
knot size Lknot* as a function of the interaction strength for four

values of Rint (more values of Rint can be found in the
Supporting Information). The interaction strength is rescaled as
ϵint ≡ ϵ × (Rint/Lp)

3 primarily for the convenience of comparing
different Rint in the same plot. Such rescaling would remove the
effect of changing Rint if the monomers are uniformly
distributed in the space. In the case of Rint = 0.2Lp, Lknot*
always increases with ϵint for −0.0512 ≤ ϵint ≤ 0.16. In the case
of Rint = 2Lp, Lknot* always decreases with ϵint for −0.064 ≤ ϵint ≤
0.32. In cases of Rint = 0.5Lp and Rint = Lp, the curves of Lknot*
versus ϵint have a U-shape, and the critical ϵint corresponding to
the minimal Lknot shifts toward larger values for larger Rint. We
expect that the curves for Rint = 0.2Lp and Rint = 2Lp also have a
U-shape if we plot over a wider range of ϵ. As we decrease ϵ for
Rint = 0.2Lp, polymers will undergo a coil−globule transition,
and the knots are no longer localized in globular states,41−44 i.e.,
Lknot* approaching a very large value. The attractions plotted in

Figure 3. Total probabilities of forming trefoil (31) knots in
simulations of linear semiflexible chains with L = 100Lp and square
potentials: (top) Rint = 0.2Lp; (bottom) Rint = 2Lp.

Figure 4. Probability of trefoil knots as a function of knot size in
simulations of linear semiflexible chains using triangle potentials. The
top and bottom graphs correspond to two interaction ranges: Rint =
0.2Lp and 2Lp, respectively.

Figure 5. Metastable knot size as a function of the interaction strength
from simulations with parameter sets {a linear chain, Nm = 2000, a
square potential} (symbols) and theory given by eq 10 (thick line).
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Figure 5 are not strong enough to induce coil−globule
transitions. As we increase ϵ toward +∞ for Rint = 2Lp, the
chain approaches the situation with a hard-core diameter of
2Lp. In this case, the chain behaves as a flexible chain with
monomer size 2Lp and has a metastable knot size Lknot* ≈
280Lp.

22,35

Having shown that short-range and long-rang intrachain
interactions lead to opposite trends of Lknot* , we determine the
critical interaction range Rint* to separate these two regimes, as
shown in Figure 6. The value of Rint* can be considered as the

interaction range which satisfies ∂Lknot* /∂ϵ = 0 at ϵ = 0. The
precise determination of Rint* can be more conveniently done
based on the pair correlation of monomers in a chain with ϵ = 0
(see the next subsection). Figure 6 shows that the value of Lknot*
increases with the hard-core diameter when we normalize both
Rint* and a by Lp. Note that a/Lp = 2 in Figure 6 refers to the
simulation of flexible chains, while the monomer size is
considered as the Kuhn length 2Lp. Table 1 shows the critical
interaction ranges for other knot types. There is no clear trend
of Rint* as the knot becomes more complex.

In addition to the metastable knot size, the mean knot size
⟨Lknot⟩ is also plotted as a function of ϵ for various Rint (see
Supporting Information). The trend of ⟨Lknot ⟩ is similar. Note
that ⟨Lknot⟩ often depends on L, while Lknot* does not.34 The
difference between ⟨Lknot⟩ and Lknot* becomes negligibly small as
the knot becomes very tight.
3.4. Theoretical Explanation of Metastable Knot Sizes.

We try to understand the effect of intrachain interactions on
knots using a theoretical framework described in section 2.3. In
the case of a square potential for the intrachain interaction, we
modify the free energy of knot formation to

= + −

× + ϵ

− −

−

F L L L L a

L N

17.06( / ) 1.86 ( 16 )knot
int

knot p
1

knot knot
2/3

p
1/3

int (3)

where Nint is the number of monomer pairs within the
interaction range a < r < Rint at ϵ = 0. Because we consider the
ensemble of unknotted states as a reference state, Nint refers to
the change of contact number induced by knot formation. The
first two terms are copied from Fknot

hard in eq 2 for the free energy
of knot formation in a semiflexible chain with purely hard-core
repulsion. Since the hard-core repulsion within the range r < a
has already been considered in the first two terms, the third
term just takes account of the contribution of the interaction in
the range r > a. The values of ϵ can be positive or negative; i.e.,
the interaction in the range r > a can be repulsive or attractive.
Note that eq 3 assumes that intrachain interactions minus hard-
core repulsion are weak perturbations to the energy landscape
and hence should be applicable only for ϵNint < 1 kBT. In the
case of strong interactions, the above equation should not be
applicable. For example, strong attractions lead to the coil−
globule transition, and the above equation cannot capture the
change of knot size during this transition.
The sign of ∂Nint/∂Lknot determines whether intrachain

interactions tend to swell or shrink a knot. In the case of a
positive value of ∂Nint/∂Lknot, where larger knots have more
interacting pairs of monomers, weak attractions tend to swell
knots.
The change in the number of contact pairs Nint can be

calculated as

∫= −N c r c r r[ ( ) ( )] d
a

R

int
square

knot unknot
int

(4)

where cknot(r) and cunknot(r) are the pair correlation functions
for knots and unknots. The functions are defined as the number
of monomer pairs at the distance r, and so 4πr2 are absorbed in
these functions. If a triangle rather square potential is applied,
the effective contact pair is

∫= −
−
−

N c r c r
R r
R a

r[ ( ) ( )] d
a

R

int
triangle

knot unknot
int

int

int

(5)

Figure 7 shows Δc(r) ≡ cknot(r) − cunknot(r) obtained from a
simulation with ϵ = 0. The overall shapes of Δc(r) are

Figure 6. Rescaled critical interaction range as a function of the
rescaled hard-core diameter. The values of Rint*

square and Rint*
triangle are

defined by eqs 6 and 7, respectively.

Table 1. Critical Interaction Ranges and the Metastable Knot
Sizes for ϵ = 0

knot type Rint*
square/Lp Rint*

triangle/Lp Lknot*ϵ=0/Lp

31 0.63 0.82 13
41 0.37 0.53 24
51 0.74 0.95 32
52 0.66 0.85 32

aThe hard-core diameter is a = (1/20)Lp.

Figure 7. Change of pair correlation induced by the formation of 31
knots with different knot sizes. (a) Symbols are obtained from a
simulation with ϵ = 0. Solid lines in are theoretical predictions by eq 8.
(b) The same simulation data from (a) but plotted in different ranges.
For clear viewing, only four curves are included in main plot in (b).
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presented in the inset of Figure 7b. The curves for different
Lknot share a similar shape but with different amplitudes. Such
shapes are due to the fact that the formation of knots increases
short-distance pairs and decrease long-distance pairs, and the
total number of pairs is not changed by knots. Note that the
interaction ranges are within in the range r ≤ 2Lp where Δc(r)
is always positive.
We now look into the dependence of Δc(r) on Lknot, which

can be used to infer the dependence of Nint on Lknot, and then
the effect of intrachain interactions on knots. The data in Figure
7a suggest that the number of contact pairs in eq 4 increases
with Lknot for a sufficiently long-range interaction. It means that
for long-range interactions ∂Nint/∂Lknot is positive, and
attractions/repulsions will lead to swelling/shrinking of knots
as observed in Figure 5.
Figure 7b reveals an opposite trend of Δc(r) at small r when

varying Lknot. Increasing Lknot will reduce Δc(r) at small r.
Accordingly, for short-range interactions, ∂Nint/∂Lknot is
negative, and attractions/repulsions will lead to shrinking/
swelling of knots as observed in Figure 5. The critical Rint*
separating short-range and long-range interactions is defined by
the following equations:

∂
∂

=
* *= =ϵ=

N r
L

( )
0

L L r R

int
square

knot ,knot knot
0

int
square (6)

∂
∂

=
* *= =ϵ=

N r
L

( )
0

L L r R

int
triangle

knot ,knot knot
0

int
triange (7)

Here, Lknot*ϵ=0 is the metastable knot size at ϵ = 0, and we have
Lknot*ϵ=0 ≈ 13Lp for trefoil knots with a/Lp = 0.05.
The above results and analysis reveal that pair correlations in

knots cknot(r) are key factors to understand the effects of
intrachain interactions on knots. To derive cknot(r) from theory,
we propose a simple model using the idea of a virtual tube
(Figure 1a). We assume each monomer in the knotted core is
confined by a virtual tube, and tube walls are made of
monomers. Then, the pair correlation function in knots is
similar to the distribution of monomers in the cross section of a
tube (Figure 1c). When the tube diameter Dtube is comparable
to Lp, the distribution of monomer density can be
approximated by a sine function sin(πx/Dtube), where x is the
minimal distance to tube walls (see Supporting Informa-
tion).45,46 As a result, we approximate the pair correlation in the
knot core cknot

core(r) by a sine function:

=c r A kr( ) sin( )knot
core

(8)

where

π π= =A p L a k p L/(8 ) and /(2 )knot
2

knot (9)

The values of A and k are determined based on two conditions:
(i) the density peak should be located at rpeak = Dtube = Lknot/p,
where p ≈ 12.4 is an intrinsic parameter47 for trefoil knots to
describe the ratio of the contour length Lknot to the tube
diameter Dtube in the virtual-tube model; (ii) the total number
of pairs in knots is ∫ 0

2rpeakΔc(r) dr = (1/2)(Lknot/a)
2. The solid

lines in Figure 7 demonstrate that eq 8 captures the general
shapes of Δc(r) in Figure 7 and the dependence of Δc(r) on
Lknot. The amplitudes of cknot

core(r) are close to Δc(r), which
implies Δc(r) is dominated by cknot(r). Hence, we approximate
Δc(r) ≈ cknot

core(r).
Substituting eqs 8 and 4 into eq 3, we obtain

π
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−
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(10)

Minimization of Fknot with respect to Lknot yields the metastable
knot sizes. On the basis of this equation, we calculate Lknot for
Rint = 2Lp with no fitting parameter as shown by the solid line
in Figure 5. The theoretical prediction captures the effect of
long-range intrachain interactions on the metastable knot size.
However, eq 10 cannot explain the effect of short-range

interactions on Lknot* because eq 8 fails to produce negative
values of ∂cknot(r)/∂Lknot at small r. Such a limitation of the
theory is not surprising because the derivation of cknot(r) using
the virtual tube makes many simplifications. Here, we
enumerate the approximations in our theory to calculate
Lknot* . First, the free energy expression for a chain with purely
hard-core repulsions Fknot= 17.06(Lknot/Lp)

−1 + 1.86Lknot(Lknot
− 16a)−2/3Lp

−1/3 is relatively precise to calculate the metastable
knot size but is not precise to predict the spring constant
around Lknot* . This means that even if we can precisely calculate
ϵNint, the calculated Lknot* for a given ϵ may be not precise.
Second, the virtual tube model is an approximation, and it is
based on an ideal knot conformation (maximally inflated knot).
Third, we use a sine function for the pair correlation, but in
reality the distribution function of the monomer density rather
than the pair correlation function is close to an sine function
(see Supporting Information). If we assume every bead in the
knot core is confined by a tube wall consisting of uniformly
distributed beads, then the pair correlation becomes similar to
the distribution of monomers density in a tube. Fourth, for the
pair function defined in eq 4, a factor of 4πr2 should be
absorbed inside. We find that the factor ∼r2 is not needed in
cknot
core(r) to fit the simulation results in Figure 7. If we use a
function form cknot

core ∼ sin(kr)r2, then we fail to capture the
collapse of different curves for different Lknot at small r. Fifth,
the distribution of monomers of wormlike chains in the circular
cross sections of tubes depends on the ratio Rtube/Lp (see
Supporting Information). As the tube diameter decreases, the
segments becomes more likely to locate close to walls. When
the tube diameter is a few times of Lp, the distribution is close
to an sine function. The dependence of this distribution on
Rtube/Lp might lead to the trend of c(r) at r when varying Lknot.
It is worthy mentioning that Dommersnes et al.30 explained

the knot shrinking induced by long-range repulsions through a
mechanism in which repulsions swell the chain and then tighten
a knot. Such mechanism explained their specific observations
but appears not to be the reason for our observations due to
three facts. First, short-range repulsions can swell the overall
chain conformation to the same extent as the one by long-range
repulsions, but they can lead to knot swelling (Figure 8).
Second, very strong long-range repulsion leads to knot swelling
rather than knot shrinking as shown by the blue line in Figure
5. Third, our simulations show that Lknot* is insensitive to the
contour length L of the entire chain, i.e., Lknot* is a local
property, while the explanation by Dommersnes et al.30

suggests Lknot* depends on L.
3.5. Relevance of Our Results in Biopolymers. Lastly,

we discuss the relevance of our results to experimental and
biological systems. For double-stranded DNA with a hard-core
diameter a ≈ 2.5 nm and persistence length Lp ≈ 50 nm, the
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critical interaction range for a triangle potential is around 43
nm. Considering that the depletion attraction induced by
crowders is close to a triangle potential, the long-range
interaction regime for DNA can be achieved by crowders
larger than 43 nm, which is close to the dextran (crowder) size
34 nm (twice of radius of gyration) used in DNA experi-
ments.48,49 For flexible chains, such as synthetic polymers,
peptide chains, or single-stranded DNA, the monomer size is
on the order of a nanometer, and thus the critical interaction
range Rint*

triangle ≈ 6.0a is only a few nanometers.
Recently, D’Adamo and Micheletti31 observed that knots in

flexible chains become more abundant in the presence of
crowders. The crowders with size 15a and 10a lead to a
significant increase of the knot size, while the knot size is
insensitive to the crowders with size 7.3a. All of these
observations are consistent with Rint*

triangle ≈ 6.0a obtained in
the current study.

4. CONCLUSIONS

In conclusion, we find that short-range and long-range
intrachain interactions lead to opposite behaviors in determin-
ing the knot sizes in polymers. This phenomenon arises
because larger knots contain more long-distance segment pairs
and less short-distance segment pairs than smaller knots. There
are two length scales in the polymer modelthe monomer size
a and the persistence length Lpand the interaction range in
the current study is defined with respect to a and Lp. The
critical interaction range depends on the persistence length and
the hard-core diameter and can range from a few nanometer to
tens of nanometers. Hence, the long-range interaction regime
can be achieved in experiments of DNA, peptide chains, and
other polymers. The theoretical derivation of the critical
interaction range requires a rigorous calculation of the short-
distance pair correlation function in knots, which may be
resolved in a future study.
An interesting observation in our study is that attractions

(repulsions) always increase (decrease) knotting probabilities
no matter if the interactions are short-range or long-range. As a
result, probabilities and sizes of knots can be controlled
independently by adjusting the range of the intrachain
interaction.
For the sake of efficient simulation and straightforward

theoretical analysis, we employ two simple potentials: rectangle
and triangle potentials. In future studies, realistic potentials can
be used, in particular, the Yukawa potential for screened
electrostatic interactions.
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