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ABSTRACT: We use Brownian dynamics simulations to study the conformational
states of knots on tensioned chains. Focusing specifically on the 81 knot, we observe knot
conformational state hopping and show that the process can be described by a two-state
kinetic model in the presence of an external force. The distribution of knot
conformational states depends on the applied chain tension, which leads to a force-
dependent distribution of knot untying pathways. We generalize our findings by
considering the untying pathways of other knots and find that the way knots untie is
generally governed by the force applied to the chain. From a broader perspective, being
able to influence how a knot unties via external force can potentially be useful for
applications of single-molecule techniques in which knots are unwanted.

The prevalence of knots in our everyday experiences, be it
in the form of entangled electric cords or hair, suggests

that knots are a common occurrence. Indeed, it has been
proven that the knotting probability of a chain tends to unity as
the chain length approaches infinity,1 hence, it is inevitable that
knots are present on long chains. Although knots are
mathematically well-defined only in circular chains,2 linear
chains with free ends can contain localized knots. Knots are
encountered not only at the macroscale, but also on the
microscale, having been observed in biopolymers such as
DNA3,4 and proteins,5,6 as well as in synthetic polymers.7

The presence of knots has been shown to have
consequences in a wide range of systems, from impairing the
translocation of proteins through cellular membranes8,9 to
blocking DNA replication and transcription.10 Hence, there
has been growing interest in investigating the polymer
dynamics of knotted chains. Previous studies by our group
and others have considered problems such as the motion of
knots along tensioned chains,11−17 stretching of knotted
polymers,18−21 and spontaneous knotting on linear chains
with free ends.22−24 From the perspective of practical
applications in biotechnology and nanotechnology, knots on
biopolymers can introduce complexities. For example, knots
can reduce the accuracy of next-generation genomics
technologies, such as nanochannel genome mapping that relies
on uniform stretching of molecules to convert physical
distances between markers to genomic distances25−27 and
nanopore sequencing, which determines DNA sequences by
measuring the ionic current blockade as molecules pass
through the nanopore.28,29

The impact of knots on polymers has led to growing interest
in not only the knotting of polymers, but also the untying of
knots on polymers with free ends. Furthermore, there is

gradual recognition of the importance of knotted protein
structures and the links to neurodegenerative diseases,30−33

and understanding how knots untie can complement studies
on how knotted proteins fold. Most unknotting studies to date
have focused on the mechanism of the untying process and
unknotting dynamics,22,34−37 with little attention given to the
knot untying pathway, that is, the topological pathway of a
knot untying. There is emerging interest in studying the
simplification of topological states by Topoisomerase-II action
to understand the mechanism of the enzyme, which serves to
disentangle DNA via strand passage.38−40 Since the way in
which a knot unties is governed by the conformational state of
the knot when it reaches a chain end, a study on knot
conformational states is relevant to understanding how knots
untie. A given knot can assume different conformational states
that can be smoothly deformed into one another by changing
the relative location of some strands without changing the knot
type. In this study, we use Brownian dynamics simulations to
study knot conformational states on tensioned chains. We
choose to focus first on a specific knot, the 81 knot, and then
generalize our findings to other knots. The 81 knot was
selected due to it being sufficiently rich for multiple untying
pathways, yet at the same time being a tractable model to
study.
We used a Brownian dynamics approach to simulate the

polymer as a linear, touching-bead chain with N = 300 beads of
diameter b, connected by N − 1 rigid rods of length
l = b = 10 nm (Figure 1a). We enforced constant bond
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lengths and implemented short-range repulsion between chain
segments to prevent self-crossings. Hydrodynamic interactions
were neglected in this work, as in previous studies,13,16 so the
drag coefficient on each bead is ζ. In the simulations, we tied a
knot into the center of the polymer chain and applied a
constant tension force FT at the chain ends. For a given set of
simulation parameters, the knotted chains were equilibrated at
the simulation conditions for at least t = 105τd, where
τd = l2ζ/kbT is the characteristic rod diffusion time. During
equilibration, the knot positions were held at the chain center
via reptation moves. After equilibration, we ran the simulations
until the knot fully untied from the chain, using a time step of
5 × 10−4τd. See the Supporting Information (SI) for details of
the simulations and a representative simulation movie.
To determine the topology of linear chains, we first closed

the chains into a ring with an auxiliary arc by implementing the
minimally interfering closure scheme, in which the auxiliary arc
is constructed to minimize additional entanglement that may
be introduced during chain closure.41 The chain topology was

then determined by projecting the chain onto a plane parallel
to the extension axis, identifying all chain crossings and
calculating the Alexander polynomial.42

This study focused primarily on the 81 knot, which can take
on two conformational states termed “S” (single clasp) and
“D” (double clasp; Figure 1b,c). Depending on the knot
conformational state and which end the knot unties from, the
81 knot can either completely untie in one step or partially
untie into the 61 knot (Figure 1d). To determine the
conformational state of the knot, we first identified the knot
boundaries by finding the smallest subset of the chain that
retained the topology of the entire chain via calculation of the
Alexander polynomial. Next, we took the crossing on one end
of the knot boundary and switched it from over to under or
vice versa, an operation known as a crossing switch and
equivalent to looping a chain end through the knot once, or
untying one step of the knot. We then determined the
topology of the chain resulting from the crossing switch by
computing the Alexander polynomial. By repeating the same

Figure 1. (a) Schematic of simulation setup: polymer chain with a 81 knot (red) held at constant tension. (b, c) Two conformational states for a 81
knot. Top: simulation snapshots. Bottom: images of macroscale chains. (d) Possible untying pathways for a 81 knot.

Figure 2. (Left) Knot conformational state versus time from representative simulation trajectories of initially centered 81 knots held under constant
tensions F̃T = FT/kbTl. (Right) Distributions of knot conformational states for the 81 knot held at constant tensions F̃T. An ensemble of 50 chains
was run for each F̃T.
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procedure with a crossing switch on the other end of the knot
boundary, we were able to obtain the knot conformational
state. To illustrate this procedure with a 81 knot in the “S”
conformational state shown in Figure 1b, a crossing switch on
the left boundary of the knot would result in a 01 knot, or
unknot, and a crossing switch on the right boundary would
give a 61 knot (see Figure S1 in the SI). Since the detected
knot boundaries and, consequently, the detected knot
conformational state can be dependent on how the chain
crossings are projected onto the chosen plane, we performed
crossing switches on knot boundaries with the knot projected
onto 200 different planes and selected the most frequently
detected conformational state at each time step. See the SI for
additional details regarding the knot conformational state
detection algorithm.
A knot on a chain held under constant tension undergoes

diffusive motion along the chain and unties upon reaching a
chain end.11,13,14,16 One might expect that the conformational
state of a knot depends solely on how the knot was tied onto
the chain. To determine if this is the case, we tied 81 knots in
the “D” conformational state onto tensioned chains and
tracked the knot conformational states on equilibrated chains.
We show in Figure 2 (left panel) representative traces of knot
conformational state over time as initially centered 81 knots
diffuse along chains subjected to constant tension forces, from
which we make two key observations. First, we observe
hopping between the “S” and “D” conformational states, which
shows that thermal fluctuations are able to induce conforma-
tional rearrangements of the knot. Therefore, the conforma-
tional state of a knot on a tensioned chain is not simply
determined by its initial state. We note that there is fast
equilibration of conformational states following hopping
events. Second, the greater the chain tension, the fewer the
occurrences of conformational state hopping and the shorter

the durations spent in the “D” conformational state. Evidently,
there is a force-dependent probability of the knot being in a
given conformational state. Figure 2 (right panel) shows the
distributions of knot conformational states for 81 knots on
equilibrated chains under constant tensions. As was observed
qualitatively from the individual traces, the 81 knot
predominantly assumes the “S” conformational state within
the range of chain tensions investigated, with the time spent in
the “S” conformational state increasing with increasing tension.
We point out that the knots studied in this work are fully
equilibrated; the distributions of knot conformational states are
independent of the initial state (Figure S7).
We postulate that the conformational states of the 81 knot

on a tensioned chain can be described as a two-state system in
the presence of an external force. The application of force
introduces a well-defined mechanical reaction coordinate for
the processend-to-end distance of the chainand allows the
energy diagram of the system to be described in terms of chain
extension.43 The “S” and “D” conformational states are
associated with local free energy minima at positions rS and
rD along the reaction coordinate, respectively. The partition
function of a system at fixed temperature T, pressure P, and
force FT is given by

Z
G F r

k T
exp

i

i T i

B

i
k
jjjjj

y
{
zzzzz∑= −

Δ −

(1)

where Gi is the free energy of state i and ri is the extension of
state i. For a two-state system, the probability of the knot being
in each state is thus

( )
p

1

1 exp G F r
k T

S
T

B

=
+ Δ − Δ

(2)

Figure 3. (a) Probability of a 81 knot being in the “S” conformational state, pS, as a function of chain tension F̃T. Dashed line is best fit to
probability of a two-state system, given by eq 2. (b) Logarithm of the equilibrium constant Keq as a function of chain tension F̃T. Dashed line is fit to
eq 4. (c, d) Cumulative distribution of dwell times in the “S” (red) and “D” (blue) conformational states for F̃T = 2. Dashed lines are exponential
fits to the distributions. (e) Logarithm of the rate constants kS→D (red) and kD→S (blue). Dashed lines are fits to eq 5. Error bars represent 95%
confidence intervals.
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where ΔG = GS − GD is the difference in free energy and Δr =
rS − rD is the difference in chain extension between the two
states.
We compute the probability of the 81 knot being in the “S”

conformational state, pS, under a range of chain tensions
(Figure 3a). By fitting pS as a function of tension F̃T = FTl/kBT
to eq 2, we obtain ΔG/kBT = −0.578 ± 0.052 and Δr/Nl =
0.0044 ± 0.0002. The difference in fractional extension
between chains with a 81 knot in the “S” and “D”
conformational states is determined from simulation data to
be 0.0050 ± 0.0006 (Figures S8 and S9), in good agreement
with the value of Δr extracted from the fit to eq 2. Indeed, the
process of conformational state hopping appears to be well-
described by a two-state model. The 81 knot can exist in either
the “S” or “D” conformational state, with the small free energy
difference (<1 kBT) implying an approximately equal
distribution of conformational states in the absence of force,
consistent with the extrapolated fit in Figure 3a. In the
presence of a force, the “S” conformational state is favored due
to the chain having a longer extension. By increasing the force
applied to the chain, we shift the equilibrium between the two
conformational states toward the “S” conformational state, a
process similarly observed with protein and RNA unfold-
ing.44,45 The fast equilibration of conformational states during
hopping events indicates that the potential wells at the “S” and
“D” conformational states are deep and a large activation
energy is required to overcome the barrier between the
conformational states.
At a given force, the equilibrium constant between the “S”

and “D” conformational states is given by

K
G F r

k T
exp T

eq
B

i
k
jjjjj

y
{
zzzzz= −

Δ − Δ
(4)

and can be determined as the ratio of average dwell times of
the knot in each conformational state. We plot ln Keq as a
function of chain tension F̃T (Figure 3b) and fit the data to eq
4 as a second, independent measure of ΔG and Δr. Doing so,
we obtain ΔG/kBT = −0.480 ± 0.072 and Δr/Nl =

0.0044 ± 0.0002, consistent with values yielded from the fit
to the probability of being in a given conformational state and
within error of the value of Δr determined from simulation
data.
To further probe the kinetics of the system, we consider the

distribution of dwell times for the knot in each conformational
state. The cumulative distributions of dwell times can be fit to
exponential distributions (Figures 3c,d and S10), suggesting
that the process of conformational state hopping at a given
force is Markovian. We can extract rate constants kS→D and
kD→S from single exponential fits to the data. From the
dependence of the rate coefficients on applied force, we can
then determine the distance between each conformational state
and the transition state (see SI for derivation)

k
F

r
k T

d ln
d B

= Δ †

(5)

where Δr† is the average distance between the conformational
state and transition state.44 By plotting the dependence of the
rate constants on the force applied (Figure 3e), we find
ΔrS†/Nl = 0.0034 ± 0.0002 and ΔrD† /Nl = 0.0009 ± 0.0005.
This indicates that the transition state is located much closer to
the “D” than the “S” conformational state and implies that the
rate of conformational state hopping from “D” to “S” is
insensitive to the applied force. This is further supported by
the plot of ln kD→S versus F̃T being relatively flat (Figure 3e).
Having studied the process of conformational state hopping

for the 81 knot, we now focus on how the knot unties when it
reaches a chain end. Since the way in which a knot unties
depends on the knot conformational state and the distribution
of conformational states is governed by the chain tension, we
expect the untying pathways of knots to also be dependent on
the force applied to the chain.
The 81 knot can untie via the pathways shown in Figure 1d.

From the “S” conformational state, the knot can either
completely untie in one step or partially untie into the 61 knot;
from the “D” conformational state, the knot partially unties
into the 61 knot regardless of which chain end loops through
the knot (see Figures S11 and S12 for detailed untying
pathways). We highlight that the partially untied 61 knot can
also undergo conformational state hopping and different

Figure 4. Distributions of untying pathways (top) and untying steps (bottom) for the 81 knot held at constant tensions F̃T. The width of each
untying pathway is weighted by the observed number of occurrences.
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untying pathways, hence the untying pathway of the 81 knot is
not solely determined by the knot conformational state and
chain end that the knot comes off. Figure 4 shows the
distributions of untying pathways for the 81 knot across a range
of applied forces (see Table S1 for data). We observe an
evident shift in untying pathways as the chain tension increases
from F̃T = 0.5 to F̃T = 5. When F̃T = 0.5, the 81 knot mostly
unties via the 61 knot (∼75%), which leads to a multistep
untying process. This is in agreement with the knot having a
∼20% probability of being in the “D” conformational state
(Figure 2). On the other hand, when F̃T = 5, the 81 knot either
completely unties to the unknot or partially unties to the 61
knot with equal likelihood, consistent with the knot having
almost 100% probability of being in the “S” conformational
state. By changing the force applied to the knotted chain, we
can influence the untying pathway and number of steps needed
to completely untie the knot.
Up to this point, we have studied extensively the kinetics of

the conformational state hopping process and implications for
the knot untying pathway for a specific knot, the 81 knot. The
question that then arises is, do we observe a similar
phenomenon with other knots? While it is laborious to
investigate all possible conformational states for other knots,
we can generalize our findings by considering the untying
pathways of various knots across a range of chain tensions.
Although we do not track the conformational states of these
knots along the chains, we can gain some insight from the
untying pathways exhibited by the knots. First, other than
(p,2)-torus knots that untie only via one pathway, a given knot
that does not undergo conformational state hopping is
expected to untie by one of two pathways, depending on
which end of the chain the knot comes off. Conversely, if a
knot exhibits more than two untying pathways, conformational
state hopping must have occurred. Second, we expect any
effect of applied force on tilting the energy landscape and
changing the knot conformational state distribution to manifest
in a force-dependent distribution of the untying pathways. We
choose three other knots with sufficient complexity for rich
unknotting dynamicsthe 86, 89 and 819 knotsand study the

untying pathways (see SI for justification). We point out that
the 819 knot is a prime knot that can untie into a composite
knot (31#31). Figure 5 shows the distributions of untying
pathways for the 86, 89 and 819 knots for applied forces from
F̃T = 0.5 to F̃T = 5 (see Tables S2−S4 for data). We observe
that all three knots exhibit more than two untying pathways,
which indicates that conformational state hopping occurred.
Furthermore, we generally observe shifts in the preferred
untying pathways with changes in the applied chain tensions.
Specifically, with increasing chain tension, the frequency of the
86 knot partially untying into the 31 knot increases, the 89 knot
increasingly undergoes multistep untying via the 62 knot and
the 819 knot increasingly unties into the 31 knot over the 51 and
31#31 knots. Hence, we conclude that the force-dependent
conformational state hopping behavior on tensioned chains is
not unique to the 81 knot.
In this work, we studied the conformational states of the 81

knot on tensioned linear chains and showed that the knot can
hop between different conformational states stochastically in a
way that depends on the applied force, which in turn affects
how the knot unties when it reaches a chain end. We expect
that the way in which a knot unties has implications for the
knot untying time and chain dynamics during the unknotting
process. We generalized our findings to other knots by
considering the untying pathways of various knots at a range of
chain tensions. Although other knots might not exist in only
two possible conformational states, in which case we can
imagine invoking a multistate model to describe the kinetics of
the conformational state hopping process, we generally observe
a force-dependent distribution of knot untying pathways for
the knots studied, suggesting that the conformational state
hopping behavior in the presence of an external force is not
specific to the 81 knot. From a practical standpoint, being able
to direct the untying pathway of a knot via external force can
be useful for applications of single-molecule techniques in
which knots are undesired, such as nanochannel genome
mapping and direct linear analysis.27 Moving forward, we hope
that this work inspires further studies into the kinetics of
knotted chains, for example in nonequilibrium flows.

Figure 5. Distributions of untying pathways for the 86 knot (top), 89 knot (middle) and 819 knot (bottom) held at constant tensions F̃T. The width
of each untying pathway is weighted by the observed number of occurrences.
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