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perform simulations to provide physical insight into this
process.

Our paper is divided into two parts. First, we will discuss the
translocation dynamics of a knotted polymer under constant
field. Previous authors have simulated this process,40,41 finding
that knots completely halt translocation above a critical force.
Suma et al.41 also examined the effect that topology plays in this
process, finding that twist knots jam more easily than torus
knots. We verify these effects in our simulation, and we examine
another phenomenon that has been unreported thus far. Close to
the jamming transition, we find that the translocation speed
exhibits large fluctuations because the knot’s dynamics are
extremely sensitive to its conformation as it enters the pore.
These observations are evidence of caging, stick-slip motion,
and molecular individualism42–44 of a polymer knot. From a
practical standpoint, these results state that there are force
regimes where translocation will be difficult to control and thus
should be avoided.

The primary contribution to this manuscript comes from
the second part of the paper where we study the translocation
dynamics of a knotted polymer when the applied field is periodic.
We find that by cycling the field on and off at the relaxation time
scale of the knot, we can control the swelling of the knot and
hence ratchet the polymer through the pore. We examine how the
translocation speed varies as a function of the cycle time. We also
discuss limitations of this approach to control polymer motion.
At large field amplitudes, we observe significant fluctuations in
the translocation speed because the knot gets trapped in certain
conformations during its relaxation. Remarkably, this effect
appears most pronounced for particular chain topologies. We
discuss the implication of these results in the conclusion.

We note that the glassy physics of locally-dense, single poly-
mers have been receiving increasing attention in the scientific
community. For example, recent experiments shown that col-
lapsed DNA can jam at the pores of viral capsids.45 It is of interest
to manipulate these arrested states, and we hope to provide
insight into tight, knotted systems here.

2 Methods

Fig. 1a shows the geometry of our Brownian dynamics simula-
tions. We represent a polymer as a linear chain of N beads of
diameter b connected by N � 1 rods of length l. The rod length
l is equal to the Kuhn length of a polymer, and we vary the bead
diameter to alter the roughness along the polymer backbone,
which gives rise to friction when segments slide over each other
in an entanglement.47 In the main manuscript, we will examine
the situation when the bead diameter is equal to the rod length
(b = l). In the ESI,† we will briefly discuss results when the
beads are not touching (b = 0.8l, i.e., more corrugated land-
scape) and slightly overlapping (b = 1.5l, i.e., a smoother energy
landscape). The model here is the simplest representation of a
flexible polymer that captures the essential features of intra-
chain friction.48 It should yield order-of-magnitude estimates of
jamming forces and time scales while summarizing the major

trends in the translocation process. Note: if one were to more
accurately determine the jamming behavior of a tightly knotted
chain, one likely has to resort to all-atom, explicit solvent simula-
tions to capture all the details of the short-range, intra-chain
interactions. This task is computationally intensive and likely
cannot be simulated for the time scales of interest here.

In our simulations, we tie a knot at the center of the chain and
insert one end of the chain into a cylindrical pore of length L and
radius R. Beads inside the pore are subject to a spatially-uniform
but time-varying body force f (t) along the pore’s axis. This model,
albeit simple, is a commonly-used, low-order representation of a
polymer electrophoresing through a pore.40,49–51 We simulate a
chain of N = 200 beads and set the pore’s radius and length to be
R = l and L = 10l. This way, a jammed knot of size 10–20 beads
will be much smaller than the polymer chain but larger than
pore’s diameter, which will allow jamming to occur at sufficiently
large forces. Like in previous studies,40,49,52,53 we neglect hydro-
dynamic interactions between chain segments and set the drag
coefficient of each bead to be z. Thus, the length and time scale
of the problem are the rod size l and its diffusion time td = l2z/kT,
where kT is the thermal energy. Typical values for single-stranded
DNA are b = l = 1 nm (its nominal width40,41) and td = l2z/kT E
3pZl3/kT E 2.3 ns. To enforce the excluded volume interactions
between chain segments, we apply a stiff harmonic potential
between overlapping beads with spring constant H = 5000 kT/l2.
Similarly, we localize the chain inside the pore by applying a
repulsive harmonic potential on beads that overlap with the pore
wall. More details can be found in the ESI,† including how we
create the initial conditions.

In this paper, we vary the body force f (t) in time and see how
this parameter affects the velocity of the knotted polymer through
the pore. The forces we apply are between f = 1–20 kT/l. If we
assume the effective, screened charge across 1 nm of single-
stranded DNA is q = �1.25e, these forces correspond to a voltage
drop of 0.20–4.1 V across the nanopore, values that have been
achieved experimentally.54 See ESI† for more details, which is
inspired by the analysis of van Dorp et al.55 The signals we pulse
have a off times around 20td E 46 ns, values that have been
attained in electroporation studies.56 We also examine what
role the chain’s topology plays in the translocation dynamics.
The knot types we study are in Fig. 1b. The 31, 51, and 71 knots

Fig. 1 (a) Schematic of Brownian dynamics simulation. A knotted polymer
translocates through a pore with a force f (t) per bead. (b) Types of knots
simulated (Alexander–Briggs notation46).
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are torus knots, which are knots whose contour can be mapped
onto a surface of a torus. The 31, 41, 52, and 61 knots are twist
knots, which are created by taking a linear chain, forming a
loop with any number of half turns, and then passing one chain
end through the loop. We note that the 31 knot is a member of
both families.

To measure the boundaries of the knotted region in our simu-
lations, we employ two techniques. The first technique involves
projecting the knot onto a plane parallel to the pore axis and then
determining the smallest subset of crossings that retains the
chain topology via computation of the Alexander polynomial.57,58

Since there are many planes that satisfy this condition, we choose
the plane that gives rise to the smallest knot size. When the knot
is jammed at the pore wall, we can also use a simpler technique
to obtain the knotted boundary. We start one bead into the pore
and calculate its number of nearest neighbors, defined as the
number of beads within a cutoff radius Rcutoff = 1.2b. We march
left until Nneighbors = 2, at which we assign this bead as the left
knot boundary. We typically use the simpler technique to calcu-
late the knot’s radius of gyration when it is jammed at the pore,
although it can only be used in the situation when the knot is
relatively tight and its topology is not too complex (as is here).

3 Results – constant force

Fig. 2a shows trajectories of a knotted polymer moving through a
pore when the body force f is constant in time and the bead
diameter is the same as the rod length (b = l). The y-axis is the
fraction of polymer translocated, defined as f = (L0� s)/L0, where s
is the contour of the polymer that has not entered the pore region
and L0 is the total length of the polymer. The results plotted here
are for the 41 topology – one of the more common knot types
observed in bulk and in channels.59 When the knot contacts the

pore – as indicated by the bend in the graphs – the polymer slows
noticeably as the knot acts an additional source of chain friction.
At low applied forces ( f = 3 kT/l), the polymer traverses the pore at
a constant speed, albeit slower than the unknotted case. At high
forces ( f = 7 kT/l), translocation completely halts since the knot
jams at the pore entrance. This qualitative behavior has been
observed in simulations by Huang et al.,60 Rosa et al.,40 and
Suma et al.41 At very high forces, the knot becomes tight and
the probability of polymer reptating through its core becomes
exponentially small.47

At intermediate forces ( f = 5 kT/l), we observe qualitatively
different behavior. Some trajectories are completely jammed,
others move through the pore at uniform speed, while others
exhibit stick-slip motion. In this situation, the configuration of the
knot at the pore wall plays a large role in the chain’s dynamics.
Fig. 3a demonstrates an example of this effect. In this graph, we
see a trace of one polymer with a 41 knot moving through a pore.
The polymer switches between jammed and unjammed states, and
during the transition, the radius of gyration of the knotted region
makes distinct hops. The number of monomers in the knotted
core changes as well. Results for the other knot topologies (31, 51,
52, 61) are shown in the ESI.† For the most part, we observe a broad
distribution in the polymer’s transit times when the knot is close
to the jamming transition, although for other knot topologies, we
see large fluctuations at other force values as well.

Fig. 3b plots the forces at which we observe significant stick-
slip behavior for the 41 knot. This figure shows the fraction of
time the polymer is jammed over an ensemble of 20–50 runs.
When this fraction is O(0.5), stick-slip is significant and hence
polymer motion is difficult to control. Although this regime
should avoided from a practical standpoint, it is interesting from
a physical perspective since it is an example of caging47,61 and
molecular individualism42–44 of the knot.

Fig. 2 Dynamics under constant force. (a) Traces of polymer translocation for a 41 knot. At low forces, the knots move through the pore at a nearly
constant velocity. At high forces, the knot jams and halts the polymer’s motion. At intermediate forces, large fluctuations are observed in the polymer
translocation. For all plots, we show traces from 20 runs. (b) Average velocity as a function of force for different knot types. Non-twist knots (71 and 51)
jam at much larger forces than twist knots (31, 41, 52, and 61). Error bars are standard deviations. The results here are for the case when the bead diameter
is equal to the rod length (b = l).
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We close this section by graphing the mean translocation
speed hvi as a function of applied force f for several different knot
topologies (Fig. 2b). We measure this quantity by fitting each
polymer trajectory like in Fig. 2a to a straight line after the knot
contacts the pore. We calculate the mean and standard deviation
from 20 runs. One observation from these results is that the twist
knots (31, 41, 52, and 61) jam much more easily than non-twist
knots (51 and 71). This corroborates the observations by Suma
et al.,41 and that paper gives an elegant mechanistic explanation
for why this discrepancy exists. In short, the twist knots dissipate
tension much more easily than non-twist knots, which leads to
less force being transmitted to the chain outside the pore. One
difference in our graph is that we examine a larger dynamic force
range (e.g., we see that the 51 knot eventually jams). We also plot
error bars, so one can see what forces lead to large fluctuations
relative to the mean (see f = 5 kT/l for the 41 knot, f = 7 kT/l for the
52 knot, and f = 10 kT/l for the 51 knot). We note that the values of
jamming we obtain in this study are larger than the ones reported
by Suma et al.41 This result can be expected as we use nearly hard-
sphere repulsions to enforce excluded volume interactions while
the other authors use softer intra-chain interactions that allow
knots to tighten more easily. We also use a larger pore diameter
(R = l as opposed to R = 0.775l).

In the ESI,† we examine how the roughness of the polymer
backbone alters the jamming physics. As expected, knots with a
more corrugated backbone (b = 0.8l, i.e., non-touching beads)
jam at lower forces than ones with a less corrugated backbone
(b = l, i.e., touching beads). If the backbone is fairly smooth
(b = 1.5l, i.e., overlapping beads), the knots jam at very large
forces for certain topologies but fail to jam for other topologies.

In the next section, we will see that the corrugation plays a large
role in relaxation behavior of the knot – i.e., how the knot swells
from its tightened state.

4 Results – pulsed force field

In the previous section, we found that knotted polymers jam at
the pore’s entrance above a critical force. This observation presents
a method to control the motion of the polymer by cycling the
applied force. Fig. 4a and b shows the schematic of this idea.
We apply force f1 above the jamming transition for time t1,
followed by zero force for time t2, and then repeat this process
ad-infinitum. During the first part of the cycle, the knot jams at
the pore entrance and halts the polymer’s motion. During the
relaxation cycle t2, the knot swells and diffuses away from the
pore. This process introduces slack into the chain, which allows
it to ratchet through the pore when the force is turned back on.
Thus, by controlling the relaxation dynamics of the chain, one
can manipulate the polymer’s speed.

We demonstrate this claim in Fig. 4c and d. In Fig. 4c, we plot
the trajectories of a polymer with a 31 knot under a pulsed field
with parameters f1 = 7 kT/l and f2 = 0 kT/l. We vary the time t2

spent in the off-cycle but keep the total cycle time t1 + t2 to be
constant (t1 + t2 = 100 l2z/kT). The bead size is equal to the rod
length (b = l). In the figure, we see that the polymers traverse
through the pore in a step-wise fashion with the mean velocity
increasing with increasing time spent in the off-cycle. We plot
the average translocation speeds of 31 and 41 knots in Fig. 4d, the
knots most commonly found in vitro.62 Again, we can tailor the
average speed at which polymers move through the pore, and
furthermore, these speeds are demonstrably slower than the free
chain case (Fig. 4d inset). Translocation speeds for other knot
topologies are shown in the ESI.†

How does cycling the force field affect the fluctuations in the
polymer’s speed? In some situations, the cycling will reduce the
relative fluctuations, while in other situations it will enhance
them. We demonstrate the former in Fig. 5. In part (a), we plot
trajectories of a polymer with a 61 twist knot when we cycle the
force field between f1 = 7 kT/l and f2 = 0 kT/l. We keep the total
cycle time constant at t1 + t2 = 100 l2z/kT and vary the time t2

spent in the off cycle. We note that force f1 for this topology is
slightly below the jamming transition and hence leads to large
fluctuations when the cycle time t2 is zero or nearly zero.
However, when the off cycle is t2 = 20 l2z/kT, the fluctuations
are suppressed and the translocation speed becomes fairly con-
stant. The reason why this phenomenon occurs is that during
the off part of the cycle, the knot swells considerably – more than
the contour that reptates through the pore during the on cycle
(Fig. 5b). Thus, the relaxation dynamics in this case swamp out
any fluctuations that rise due to the knot contacting the pore.

In Fig. 6, we show a situation where the cycling gives rise to
the opposite effect – i.e., enhanced fluctuations. In this graph,
we show the 31 and 41 knot moving through the pore when we
cycle the force field between two values: f = f1 and f2 = 0. We vary
the force f1 during the on cycle but keep the cycle times the

Fig. 3 Stick-slip motion of knotted polymers at intermediate forces.
(a) Trajectory of a 41-knotted polymer under constant force (f = 5 kT/l). When
the motion stalls, the knot’s radius of gyration makes a distinct hop. The red
line is a piece-wise constant fit to the radius of gyration. Right: Snapshots of
the knot show that the number of monomers in the knotted core changes
during stick-slip motion. The bead size is equal to the rod length (b = l), but
the beads are drawn small for illustrative purposes. (b) Fraction of time a knot is
trapped as a function of force for the 41 topology. We consider a knot trapped
if it moves less than 0.4l for times greater than 250 l2z/kT. The data points are
averages over 20–50 runs.
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same at t1 = 80 l2z/kT and t2 = 20 l2z/kT. The forces we examine
are well above the jamming transition for the two knot topologies.
When f1 = 7 kT/l, the polymers ratchet through the pore in a step-
wise fashion with a fairly uniform velocity. When the applied force
is very large ( f1 = 15 kT/l), the 41 knot exhibits large fluctuations
in its speed while the dynamics of the 31 knot stays the same.

We observe such enhanced fluctuations for the non-torus knot
topologies (41, 52, and 61) but have yet to observe these effects for
the torus topologies (31, 51, 71) – see ESI† for more details. We offer
an explanation for this phenomenon below.

Fig. 5 Reduction of fluctuations near jamming transition. (a) Trajectories
of a 61 knot when we cycle the force field on and off between f1 = 7 kT/l
and f2 = 0. f1 is close to the jamming transition for this knot topology. The
total cycle time is t1 + t2 = 100 l2z/kT and we vary the off time t2.
Increasing the off time reduces fluctuations in the polymer’s transit time.
(b) Knot size vs. time for one trajectory when the off time is t2 = 20 l2z/kT.
The knot swells by 4% of the chain during relaxation, which is larger than
the maximum amount of contour reptating through the knot in the
constant force case (maximum 2% of chain). In all simulations, the bead
size is equal to the rod length (b = l).

Fig. 6 Enhanced fluctuations due to cycling at large forces. Top row:
Trajectories of a 41-knotted polymer moving through a pore via a force
field cycling on and off. The on time is t1 = 80 l2z/kT, and the off time is
t2 = 20 l2z/kT. At moderate forces (f1 = 7 kT/l), the polymer ratchets
through the pore with a fairly constant velocity. If the force becomes too
large (f1 = 15 kT/l), the polymer’s speed exhibits large fluctuations. This
phenomenon appears primarily for the non-torus knots (41, 52, 61) but not
for the torus knots (31, 51, 71) (see ESI† for details). Bottom row: Trajectories
of a 31 knot at the same forces. Here we do not observe large fluctuations.
In these simulations, the bead size is equal to the rod length (b = l).

Fig. 4 Dynamics with oscillating force. (a) Periodic force profile applied to polymer inside pore. (b) Snapshots of polymer movement when we cycle
the field on and off. The polymer jams during the on cycle and relaxes during the off cycle, which allows us to ratchet the polymer through the pore.
(c) Trajectories of polymer translocation with a 31 knot. We alternate between a constant field (f1 = 7 kT/l) and no field (f2 = 0 kT/l). The total cycle time is
fixed: t1 + t2 = 100 l2z/kT. By adjusting the off time t2, we control the speed at which the polymer moves through the pore. Faint lines are trajectories
from 20 runs, and dark lines are averages from these runs. (d) Average translocation speed vs. off time for the 31 and 41 knot. The inset shows the speed of
the unknot (01). The parameters are f1 = 7 kT/l, f2 = 0 kT/l, t1 + t2 = 100 l2z/kT. Error bars are standard deviations from 20 runs. All results are for the case
when the bead diameter is equal to the rod length (b = l).

Soft Matter Paper

Pu
bl

is
he

d 
on

 0
9 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
by

 S
ta

nf
or

d 
U

ni
ve

rs
ity

 o
n 

21
/0

5/
20

16
 0

2:
35

:5
6.

 
View Article Online


